Какие фабрики производят обогащение вольфрамовых руд. Извлечение слабомагнитных минералов на высокоинтенсивном магнитном сепараторе из руд цветных, редкоземельных и благородных металлов на примере ОАО «Иргиредмет», Ковдорский ГОК

Изобретение относится к способу комплексной переработки хвостов обогащения вольфрамсодержащих руд. Способ включает их классификацию на мелкую и крупную фракции, винтовую сепарацию мелкой фракции с получением вольфрамового продукта и его перечистку. При этом перечистку проводят на винтовом сепараторе с получением чернового вольфрамового концентрата, который подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата, который подвергают флотации с получением высокосортного кондиционного вольфрамового концентрата и сульфидсодержащего продукта. Хвосты винтового сепаратора и концентрационного стола объединяют и подвергают сгущению. При этом полученный после сгущения слив подают на классификацию хвостов обогащения вольфрамсодержащих руд, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который отправляют на перечистку. Техническим результатом является повышение глубины переработки хвостов обогащения вольфрамсодержащих руд. 1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке хвостов обогащения вольфрамсодержащих руд.

При переработке вольфрамсодержащих руд, как и хвостов их обогащения, используют гравитационные, флотационные, магнитные, а также электростатические, гидрометаллургические и другие способы (см., например, Берт P.O., при участии К.Миллза. Технология гравитационного обогащения. Пер. с англ. - М.: Недра, 1990). Так, для предварительной концентрации полезных компонентов (минерального сырья) применяются фотометрическая и люмометрическая сортировка (например, обогатительные фабрики «Маунт Карбайн», «Кинг Айленд»), обогащение в тяжелых средах (например, португальская фабрика «Панаскуера» и английская фабрика «Хемердан»), отсадка (в особенности бедного сырья), магнитная сепарация в слабомагнитном поле (например, для выделения пирита, пирротина) или высокоинтенсивная магнитная сепарация (для разделения вольфрамита и касситерита).

Для переработки вольфрамсодержащих шламов известно использование флотации, в частности вольфрамита в КНР и на канадской фабрике «Маунт Плисад», причем на некоторых фабриках флотация полностью заменила гравитационное обогащение (например, фабрики «Йокберг», Швеция и «Миттерсил», Австрия).

Известно также использование винтовых сепараторов и винтовых шлюзов для обогащения вольфрамсодержащих руд, старых отвалов, лежалых хвостов, шламов.

Так, например, при переработке старых отвалов вольфрамовой руды на фабрике «Чердояк» (Казахстан) исходный отвальный материал после дробления и измельчения до крупности - 3 мм подвергался обогащению на отсадочных машинах, подрешетный продукт которых перечищался затем на концентрационном столе. Технологическая схема включала также обогащение на винтовых сепараторах, на которых извлекалось 75-77% WO 3 при выходе продуктов обогащения 25-30%. Винтовая сепарация позволила повысить извлечение WO 3 на 3-4% (см., например, Аникин М.Ф., Иванов В.Д., Певзнер М.Л. «Винтовые сепараторы для обогащения руд», Москва, изд-во «Недра», 1970 г., 132 с.).

Недостатками технологической схемы переработки старых отвалов являются высокая нагрузка в голове процесса на операцию отсадки, недостаточно высокое извлечение WO 3 и значительный выход продуктов обогащения.

Известен способ попутного получения вольфрамового концентрата путем переработки хвостов молибденитовой флотации (фабрика «Клаймакс молибденум», Канада). Хвосты, содержащие вольфрам, разделяют с помощью винтовой сепарации на отвальные по вольфраму шламы (легкая фракция), первичный вольфрамит - касситеритовый концентрат. Последний подвергают гидроциклонированию и слив шламов направляют в отвальные хвосты, а песковую фракцию - на флотационное выделение пиритного концентрата с содержанием 50% S (сульфидов) и вывод его в отвальные хвосты. Камерный продукт сульфидной флотации перечищают с помощью винтовой сепарации и/или конусов с получением отвальных пиритсодержащих хвостов и вольфрамит-касситеритового концентрата, который подвергают обработке на концентрационных столах. При этом получают вольфрамит-касситеритовый концентрат и отвальные хвосты. Черновой концентрат после обезвоживания перечищают последовательно путем очистки его от железа с помощью магнитной сепарации, флотационного удаления из него монацита (флотация фосфатов) и затем обезвоживают, сушат, классифицируют и разделяют с помощью стадийной магнитной сепарации на концентрат с содержанием 65% WO 3 после I стадии и 68% WO 3 после II стадии. Также получают немагнитный продукт - оловянный (касситеритовый) концентрат с содержанием ~35% олова.

Этому способу переработки свойственны недостатки - сложность и многостадийность, а также высокая энергоемкость.

Известен способ доизвлечения вольфрама из хвостов гравитационного обогащения (фабрика «Боулдер», США). Хвосты гравитационного обогащения доизмельчают, обесшламливают в классификаторе, пески которого разделяют на гидравлических классификаторах. Полученные классы обогащают раздельно на концентрационных столах. Крупнозернистые хвосты возвращают в цикл измельчения, а тонкие хвосты сгущают и повторно обогащают на шламовых столах с получением готового концентрата, промпродукта, поступающего на доизмельчение, и хвостов, направляемых на флотацию. Концентрат основной флотации подвергают одной перечистке. В исходной руде содержится 0,3-0,5% WO 3 ; извлечение вольфрама достигает 97%, причем около 70% вольфрама извлекается флотацией. Однако содержание вольфрама во флотационном концентрате низкое (около 10% WO 3) (см., Полькин С.И., Адамов Э.В. Обогащение руд цветных металлов. Учебник для вузов. М., Недра, 1983, 213 с.)

Недостатками технологической схемы переработки хвостов гравитационного обогащения являются высокая нагрузка в голове процесса на операцию обогащения на концентрационных столах, многооперационность, низкое качество получаемого концентрата.

Известен способ обработки шеелитсодержащих хвостов с целью удаления из них опасных материалов и переработки неопасных и рудных минералов с помощью улучшенного процесса разделения (сепарации) (KR 20030089109, СНАЕ et al., 21.11.2003). Способ включает стадии гомогенизирующего смешивания шеелитсодержащих хвостов, введение пульпы в реактор, «фильтрацию» пульпы с помощью грохота для удаления различных инородных материалов, последующее разделение пульпы путем винтовой сепарации, сгущение и дегидратацию нерудных минералов с получением кека, сушку кека в роторной сушилке, дробление сухого кека с использованием молотковой дробилки, работающей в замкнутом цикле с грохотом, разделение дробленых минералов с помощью «микронного» сепаратора на фракции мелких и грубых зерен (гранул), а также магнитную сепарацию грубозернистой фракции с получением магнитных минералов и немагнитной фракции, содержащей шеелит. Недостатком этого способа являются многооперационность, использование энергоемкой сушки влажного кека.

Известен способ доизвлечения вольфрама из отвальных хвостов обогатительной фабрики рудника Ингички (см. А.Б.Ежков, Х.Т.Шарипов, К.Л.Бельков «Вовлечение в переработку лежалых вольфрамсодержащих хвостов Ингичкинского рудника». Тезисы докладов III Конгресса обогатителей стран СНГ, т.1, МИСиС, М., 2001). Способ включает приготовление пульпы и ее дешламацию в гидроциклоне (удаления класса - 0,05 мм), последующее разделение обесшламленной пульпы на конусном сепараторе, двухстадийную перечистку концентрата конусного сепаратора на концентрационных столах с получением концентрата, содержащего 20,6% WO 3 , при среднем извлечении 29,06%. Недостатками этого способа являются низкое качество получаемого концентрата и недостаточно высокое извлечение WO 3 .

Описаны результаты исследований по гравитационному обогащению хвостов Ингичкинской обогатительной фабрики (см. С.В.Руднев, В.А.Потапов, Н.В.Салихова, А.А.Канцель «Исследования по выбору оптимальной технологической схемы гравитационного обогащения техногенных образований Ингичкинской обогатительной фабрики» // Горный вестник Узбекистана, 2008, №3).

Наиболее близким к патентуемому техническому решению является способ извлечения вольфрама из лежалых хвостов обогащения вольфрамсодержащих руд (Артемова О.С. Разработка технологии извлечения вольфрама из лежалых хвостов Джидинского ВМК. Автореферат дисс. кандидата технических наук, Иркутский государственный технический университет, Иркутск, 2004 г. - прототип).

Технология извлечения вольфрама из лежалых хвостов по этому способу включает операции получения черновых вольфрамсодержащих концентрата и промпродукта, золотосодержащего продукта и вторичных отвальных хвостов с помощью гравитационных методов мокрого обогащения - винтовой и центробежной сепарации - и последующей доводки полученных черновых концентрата и промпродукта с помощью гравитационного (центробежного) обогащения и магнитной сепарации с получением кондиционного вольфрамового концентрата с содержанием 62,7% WO 3 при извлечении 49,9% WO 3 .

Согласно этому способу лежалые хвосты подвергаются первичной классификации с выделением 44,5% масс. во вторичные отвальные хвосты в виде фракции +3 мм. Фракцию хвостов крупностью -3 мм разделяют на классы -0,5 и +0,5 мм и из последнего с помощью винтовой сепарации получают грубый концентрат и хвосты. Фракцию -0,5 мм разделяют на классы -0,1 и +0,1 мм. Из класса +0,1 мм с помощью центробежной сепарации выделяют грубый концентрат, который, как и грубый концентрат винтовой сепарации, подвергают центробежной сепарации с получением чернового вольфрамового концентрата и золотосодержащего продукта. Хвосты винтовой и центробежной сепарации доизмельчают до -0,1 мм в замкнутом цикле с классификацией и затем разделяют на классы -0,1+0,02 и -0,02 мм. Класс -0,02 мм выводят из процесса как вторичные отвальные хвосты. Класс -0,1+0,02 мм обогащают путем центробежной сепарации с получением вторичных отвальных хвостов и вольфрамового промпродукта, направляемого на доводку магнитной сепарацией вместе с концентратом центробежной сепарации, доизмельченным до крупности -0,1 мм. При этом получают вольфрамовый концентрат (магнитная фракция) и промпродукт (немагнитная фракция). Последний подвергается магнитной сепарации II с выделением немагнитной фракции во вторичные отвальные хвосты и вольфрамового концентрата (магнитная фракция), который обогащают последовательно путем центробежной, магнитной и вновь центробежной сепарации с получением кондиционного вольфрамового концентрата с содержанием 62,7% WO 3 при выходе 0,14% и извлечении 49,9%. При этом хвосты центробежных сепараций и немагнитная фракция направляются во вторичные отвальные хвосты, суммарный выход которых на стадии доводки чернового вольфрамового концентрата составляет 3,28% при содержании в них 2,1% WO 3 .

Недостатками этого способа являются многооперационность технологического процесса, включающего 6 операций классификации, 2 операции доизмельчения, а также 5 операций центробежной и 3 операции магнитной сепарации с использованием сравнительно дорогостоящих аппаратов. При этом доводка чернового вольфрамового концентрата до кондиционного связана с получением вторичных отвальных хвостов со сравнительно высоким содержанием в них вольфрама (2,1% WO 3).

Задача настоящего изобретения состоит в усовершенствовании способа переработки хвостов обогащения, в том числе лежалых отвальных хвостов обогащения вольфрамсодержащих руд, в получении высокосортного вольфрамового концентрата и попутно сульфидсодержащего продукта при уменьшении содержания вольфрама во вторичных отвальных хвостах.

Патентуемый способ комплексной переработки хвостов обогащения вольфрамсодержащих руд включает классификацию хвостов на мелкую и крупную фракции, винтовую сепарацию мелкой фракции с получением вольфрамового продукта, перечистку вольфрамового продукта, и доводку с получением высокосортного вольфрамового концентрата, сульфидсодержащего продукта и вторичных отвальных хвостов.

Способ отличается тем, что полученный вольфрамовый продукт подвергают перечистке на винтовом сепараторе с получением чернового концентрата и хвостов, черновой концентрат подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата и хвостов. Хвосты концентрационного стола и винтового сепаратора перечистки объединяют и подвергают сгущению, далее слив сгущения подают на стадию классификации в голову технологической схемы, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который направляют на перечистку. Гравитационный вольфрамовый концентрат подвергают флотации с получением высокосортного кондиционного вольфрамового концентрата (62% WO 3) и сульфидсодержащего продукта, который перерабатывают известными способами.

Способ может характеризоваться тем, что хвосты классифицируют на фракции, преимущественно крупностью +8 мм и -8 мм.

Технический результат патентуемого способа состоит в повышении глубины переработки при сокращении количества технологических операций и нагрузки на них вследствие выделения в голове процесса основной массы исходных хвостов (более 90%) во вторичные отвальные хвосты, с использованием более простой по устройству и эксплуатации энергосберегающей технологии винтовой сепарации. Это позволяет резко снизить нагрузку на последующие обогатительные операции, а также капитальные затраты и эксплуатационные издержки, что обеспечивает оптимизацию процесса обогащения.

Эффективность патентуемого способа показана на примере комплексной переработки хвостов Ингичкинской обогатительной фабрики (см. чертеж).

Переработку начинают с классификации хвостов на мелкую и крупную фракции с выделением вторичных отвальных хвостов в виде крупной фракции. Мелкую фракцию хвостов подвергают винтовой сепарации с выделением в голове технологического процесса во вторичные отвальные хвосты основной массы исходных хвостов (более 90%). Это позволяет соответственно резко снизить нагрузку на последующие операции, капитальные затраты и эксплуатационные издержки.

Полученный вольфрамовый продукт подвергают перечистке на винтовом сепараторе с получением чернового концентрата и хвостов. Черновой концентрат подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата и хвостов.

Хвосты концентрационного стола и винтового сепаратора перечистки объединяют и подвергают сгущению, например, в сгустителе, механическом классификаторе, гидроциклоне и других аппаратах. Слив сгущения подают на стадию классификации в голову технологической схемы, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который направляют на перечистку.

Гравитационный вольфрамовый концентрат доводят с помощью флотации до высокосортного кондиционного вольфрамового концентрата (62% WO 3) с получением при этом сульфидсодержащего продукта.

Таким образом, из вольфрамсодержащих хвостов выделяют высокосортный (62% WO 3) кондиционный вольфрамовый концентрат при достижении сравнительно высокого извлечения WO 3 , составляющего ~49% и сравнительно низкого содержания вольфрама (0,04% WO 3) во вторичных отвальных хвостах.

Полученный сульфидсодержащий продукт перерабатывают известным способом, например, используют для получения серной кислоты и серы, а также применяют в качестве корректирующей добавки при производстве цементов.

Высокосортный кондиционный вольфрамовый концентрат является высоколиквидным товарным продуктом.

Как следует из результатов осуществления патентуемого способа на примере лежалых отвальных хвостов обогащения вольфрамсодержащих руд Ингичкинской обогатительной фабрики, показана его эффективность по сравнению со способом-прототипом (см. таблицу). Обеспечивается дополнительное получение сульфидсодержащего продукта, сокращение объема свежей потребляемой воды за счет создания водооборота. Создается возможность переработки существенно более бедных хвостов (0,09% WO 3), значительное снижение содержания вольфрама во вторичных отвальных хвостах (до 0,04% WO 3). Кроме того, снижено число технологических операций и уменьшена нагрузка на большинство из них вследствие выделения в голове технологического процесса основной массы исходных хвостов (более 90%) во вторичные отвальные хвосты, с использованием более простой и менее энергоемкой технологии винтовой сепарации, что позволяет снизить капитальные затраты на приобретение оборудования и эксплуатационные издержки.

1. Способ комплексной переработки хвостов обогащения вольфрамсодержащих руд, включающий их классификацию на мелкую и крупную фракции, винтовую сепарацию мелкой фракции с получением вольфрамового продукта, его перечистку и доводку с получением высокосортного вольфрамового концентрата, сульфидсодержащего продукта и вторичных отвальных хвостов, отличающийся тем, что полученный после винтовой сепарации вольфрамовый продукт подвергают перечистке на винтовом сепараторе с получением чернового вольфрамового концентрата, полученный черновой вольфрамовый концентрат подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата, который подвергают флотации с получением высокосортного кондиционного вольфрамового концентрата и сульфидсодержащего продукта, хвосты винтового сепаратора и концентрационного стола объединяют и подвергают сгущению, полученный после сгущения слив подают на классификацию хвостов обогащения вольфрамсодержащих руд, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который отправляют на перечистку.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Навоийский горно-металлургический комбинат

Навоийский государственный горный институт

«Химико-металлургический» факультет»

Кафедра «Металлургия »

Пояснительная записка

к выпускной квалификационной работе

на тему: «Выбор, обоснование и расчет технологии переработки вольфрамо-молибденовой руды»

Выпускник: К. Сайфиддинов

Навои- 2014
  • Введение
  • 1. Общие сведения о методах обогащения вольфрамовых руд
  • 2. Обогащение молибдено-вольфрамовых руд
  • 2. Технологический раздел
  • 2.1 Расчет схемы дробления с выбором оборудования
  • 2.2 Расчет схемы измельчения
  • 2.3 Выбор и расчёт мельниц полусамоизмельчения
  • Список использованной литературы

Введение

Полезные ископаемые являются основой народного хозяйства, и нет ни одной отрасли, где бы ни применялись полезные ископаемые или продукты их обработки.

Значительные запасы полезных ископаемых многих месторождений Узбекистана позволяют строить крупные высокомеханизированные горно-обогатительные и металлургические предприятия, добывающие и перерабатывающие многие сотни миллионов тонн полезных ископаемых с высокими технико-экономическими показателями.

Горнодобывающая промышленность имеет дело с твёрдыми полезными ископаемыми, из которых при современном уровне техники целесообразно извлекать металлы или другие минеральные вещества. Главными условиями при разработке месторождений полезных ископаемых являются повышение извлечения их из недр и комплексное использование. Это обусловлено:

- значительными материальными и трудовыми затратами при разведке и промышленном освоении новых месторождений;

- возрастающей потребностью различных отраслей народного хозяйства практически во всех минеральных компонентах, входящих в состав руды;

- необходимостью создания безотходной технологии и тем самым предотвращения загрязнения окружающей среды отходами производства.

По этим причинам возможность промышленного использования месторождения определяется не только ценностью и содержанием полезного ископаемого, его запасами, географическим расположением, условиями добычи и транспортирования, другими экономическими и политическими факторами, но и наличием эффективной технологии переработки добываемых руд.

1. Общие сведения о методах обогащения вольфрамовых руд

Вольфрамовые руды обогащают, как правило, в две стадии - первичное гравитационное обогащение и доводка черновых концентратов различными методами, что объясняется низким содержанием вольфрама в перерабатываемых рудах (0,2 - 0,8% WO3) и высокими требованиями к качеству кондиционных концентратов (55 - 65% WO3), Общая степень обогащения составляет примерно 300 - 600.

Вольфрамитовые (гюбнеритовые и ферберитовые) коренные руды и россыпи обычно содержат ряд других тяжелых минералов, поэтому при первичном гравитационном обогащении руд стремятся выделить коллективные концентраты, которые могут содержать от 5 до 20% WO3 , а также касситерит, танталитколумбит, магнетит, сульфиды и др. При доводке коллективных концентратов необходимо получение кондиционных мономинеральных концентратов, для чего могут быть применены флотация или флотогравитация сульфидов, магнитная сепарация магнетита в слабом магнитном поле, а более сильном - вольфрамита. Возможно применение электрической сепарации, гравитационного обогащения на столах, флотации минералов пустой породы и других процессов для разделения минералов, тем, чтобы готовые концентраты удовлетворяли требованиям ГОСТов и техническим условиям не только по содержанию основного металла, но и по содержанию вредных примесей.

Учитывая большую плотность вольфрамовых минералов (6 - 7,5 г/см 3), при обогащении могут успешно применяться гравитационные методы обогащения на отсадочных машинах, концентрационных столах, шлюзах, струйных и винтовых сепараторах и др. При тонкой вкрапленности ценных минералов применяют флотацию или сочетание гравитационных процессов с флотацией. Учитывая возможность ошламливания вольфрамита при гравитационном обогащении, флотацию применяют как вспомогательный процесс даже при обогащении крупно вкрапленных вольфрамитовых руд для более полного извлечения вольфрама из шламов.

При наличии в руде крупных богатых вольфрамом штуфных кусков или крупных кусков пустой породы может быть применена сортировка руды крупностью - 150 +50 мм на ленточных конвейерах с целью отделения богатого крупнокускового концентрата или кусков породы, разубоживающих руду, поступающую на обогащение.

При обогащении шеелитовых руд также применяют гравитацию, но чаще всего сочетание гравитационных методов с флотацией и флотогравитацией или только флотацию.

При сортировке шеелитовых руд применяют люминесцентные установки. Шеелит при облучении ультрафиолетовыми лучами светится ярко-голубым светом, что позволяет отделять куски шеелита или куски пустой породы.

Шеелит - легкофлотируемый минерал, характеризующийся большой шламуемостью. Извлечение шеелита значительно возрастает при флотационном обогащении по сравнению с гравитационным, поэтому при обогащении шеелитовых руд в странах СНГ в настоящее время на всех фабриках стали применять флотацию.

При флотации вольфрамовых руд возникает ряд трудных технологических проблем, требующих правильного решения в зависимости от вещественного состава и ассоциации отдельных минералов. В процессе флотации вольфрамита, гюбнерита и ферберита трудно отделить от них оксиды и гидроксиды железа, турмалин и другие минералы, содержащие нивелируют флотационные свойства их с минералами вольфрама.

Флотация шеелита из руд с кальцийсодержащими минералами (кальцит, флюорит, апатит и др.) осуществляется анионными жирнокислотными собирателями, обеспечивающими их хорошую флотируемость с катионами кальция шеелита и других кальцийсодержащих минералов. Отделение шеелита от кальцийсодержащих минералов возможно лишь с применением таких регуляторов, как жидкое стекло, кремнефтористый натрий, сода и др.

2. Обогащение молибдено-вольфрамовых руд

На Тырныаузской фабрике обогащаются молибдено-вольфрамовые руды Тырныаузского месторождения, которые являются сложными по вещественному составу не только ценных минералов, имеющих очень тонкую вкрапленность, но и сопутствующих минералов пустой породы. Рудные минералы - шеелит (десятые доли процента), молибденит (сотые доли процента), повеллит, частично ферримолибдит, халькопирит, висмутин, пирротин, пирит, арсенопирит. Нерудные минералы - скарны (50-70%), роговики (21-48%), гранит (1 - 12%), мрамор (0,4- 2%), кварц, флюорит, кальцит, апатит (3-10%) и др.

В верхней части месторождения молибден на 50-60% представлен повеллитом и ферримолибдитом, в нижней части их содержание снижается до 10-20%. В шеелите в виде изоморфной примеси присутствует молибден. Часть молибденита, окисленная с поверхности, покрыта пленкой повеллита. Часть молибдена очень тонко прорастает с молибдошеелитом.

Более 50% окисленного молибдена связано с шеелитом в виде включений повеллита - продукта распада твердого раствора Ca(W, Мо)О 4 . Подобные формы вольфрама и молибдена возможно выделить лишь в коллективный концентрат с последующим разделением гидрометаллургическим способом.

Начиная с 1978 г. на фабрике полностью реконструирована схема рудоподготовки. Ранее руда после крупного дробления на руднике транспортировалась на фабрику в вагонетках по подвесной канатной дороге. В дробильном отделении фабрики руда додрабливалась до - 12 мм, разгружалась в бункера и далее измельчалась в одну стадию в шаровых мельницах, работающих в замкнутом цикле с двухспиральными классификаторами, до 60% класса - 0,074 мм.

Новая технология рудоподготовки была разработана совместно институтом Механобр и комбинатом и введена в действие в августе 1978 г.

В схеме рудоподготовки предусмотрено крупное дробление исходной руды до --350 мм, грохочение по классу 74 мм, раздельное складирование каждого класса в бункерах с целью более точного регулирования подачи в мельницу самоизмельчения крупного и мелкого классов руды.

Самоизмельчение крупнодробленой руды (--350 мм) осуществляется в мельницах типа «Каскад» диаметром 7 м (ММС-70Х Х23) с доизмельчением крупнозернистой фракции до 62% класса --0,074 мм в мельницах МШР-3600Х5000, работающих в замкнутом цикле с односпиральными классификаторами 1КСН-3 и размещаемых в новом корпусе на склоне горы на отметке около 2000 м над уровнем моря между рудником и действующей фабрикой.

Подача готового продукта из корпуса самоизмельчения на флотацию осуществляется гидротранспортом. Трасса гидротранспорта представляет собой уникальное инженерное сооружение, обеспечивающее транспортирование пульпы при перепаде высот более 600 м. Она состоит из двух трубопроводов диаметром 630 мм, протяженностью 1750 м, оснащенных успокоительными колодцами диаметром 1620 мм и высотой 5 м (по 126 колодцев на каждый трубопровод).

Использование системы гидротранспорта позволило ликвидировать цех грузовых канатных дорог, корпус среднего и мелкого дробления, мельницы МШР-3200Х2100 на обогатительной фабрике. В главном корпусе фабрики построены и введены в эксплуатацию две секции основной флотации, новые отделения шеелитовой и молибденовой доводок, цех варки жидкого стекла, системы оборотного водоснабжения. Значительно расширен фронт сгущения черновых флотационных концентратов и промпродуктов за счет установки сгустителей диаметром 30 м, что позволяет снизить потери со сливами сгущения.

Вновь вводимые мощности оснащаются современными АСУТП и локальными системами автоматизации. Так, в корпусе самоизмельчения функционирует АСУ в режиме непосредственного управления на базе вычислительных машин М-6000. В главном корпусе внедрена система централизованного контроля вещественного состава пульпы с помощью рентгеноспектральных анализаторов КРФ-17 и КРФ-18 в комплексе с вычислительной машиной М-6000. Освоена автоматизированная система отбора и доставки проб (пневмопочтой) в экспресс-лабораторию с управлением от вычислительного комплекса КМ-2101 и выдачей анализов на телетайп.

Один из наиболее сложных переделов -- доводка черновых шеелитовых концентратов по методу Н. С. Петрова -- оснащен системой автоматического контроля и управления, которая может работать либо в режиме «советчика» оператору-флотатору, либо в режиме непосредственного управления процессом, регулируя расход подавителя (жидкого стекла), уровень пульпы в перечистных операциях и другие параметры процесса.

Цикл флотации сульфидных минералов оснащен системами автоматического контроля и дозирования собирателя (бутилового ксантогената) и подавителя (сернистого натрия) в цикле медно-молибденовой флотации. Системы работают с использованием в качестве датчиков ионселективных электродов.

В связи с увеличением объема производства фабрика перешла на переработку новых разновидностей руд, отличающихся пониженным содержанием некоторых металлов, большей степенью их окисленности. Это потребовало усовершенствования реагентного режима флотации сульфидно-окисленных руд. В частности, в сульфидном цикле применено прогрессивное технологическое решение -- сочетание двух пенообразователей активного и селективного типов. В качестве активного пенообразователя используются реагенты, содержащие терпеновые спирты, и в качестве селективного -- новый реагент ЛВ, разработанный для обогащения многокомпонентных руд, и в первую очередь тырныаузских.

В цикле флотации окисленных минералов жирнокислотными собирателями используются интенсифицирующие добавки реагента-модификатора на основе низкомолекулярных карбоновых кислот. Для улучшения флотационных свойств пульпы циркулирующих промпродуктов внедрено регулирование их ионного состава. Более широкое применение нашли методы химической доводки концентратов.

Из мельницы самоизмельчения руда поступает на грохочение. Класс +4 мм доизмельчается в шаровой мельнице. Слив мельницы и подгрохотный продукт (--4 мм) подвергаются I и II классификации.

В шаровую мельницу подают 690 г/т соды и 5 г/т трансформаторного масла. Слив классификатора поступает на основную молибденовую флотацию, куда подают 0,5 г/т ксантогената и 46 г/т терпинеола. После I и II перечистных флотации молибденовый концентрат (1,2--1,5% Мо) подвергается пропарке с жидким стеклом (12 г/т) при 50--70°С, III перечистной флотации и доизмельчению до 95--98% класса --0,074 мм с подачей 3 г/т цианида натрия и 6 г/т жидкого стекла.

Готовый молибденовый концентрат содержит около 48% Мо, 0,1% Си и 0,5% WO 3 при извлечении Мо 50%. Хвосты контрольных флотации III и IV перечистных операций сгущаются и направляются на медно-молибденовую флотацию с подачей 0,2 г/т ксантогената и 2 г/т керосина. Дважды перечищенный медно-молибденовый концентрат после пропарки с сернистым натрием поступает на селективную флотацию, где выделяется медный концентрат, содержащий 8--10% Си (при извлечении около 45%), 0,2% Мои 0,8% Bi.

Хвосты контрольной молибденовой флотации, содержащие до 0 2% WO 3 , направляются на шеелитовую флотацию, осуществляемую по очень разветвленной и сложной схеме. После перемешивания с жидким стеклом (350 г/т) проводят основную шеелитовую флотацию с олеатом натрия (40 г/т). После I перечистной флотации и сгущения до 60% твердого шеелитовый концентрат пропаривается с жидким стеклом (1600 г/т) при 80--90 °С. Далее концентрат еще дважды перечищается и снова поступает на пропарку при 90--95 °С с жидким стеклом (280 г/т) и снова трижды перечищается.

2. Технологический раздел

2.1 Расчет схемы дробления с выбором оборудования

Проектируемая обогатительная фабрика предназначена для переработки молибденсодержащих вольфрамовых руд.

Руда средней крупности (f=12±14 ед. по шкале профессора Протодьяконова) характеризуется плотностью с = 2,7 т/м 3 , на фабрику поступает с влажностью 1,5%. Максимальный кусок d=1000 мм.

По величине производительности обогатительная фабрика относится к категории средней производительности (табл. 4/2/), по международной классификации - к группе С.

На фабрику руда D max . =1000 мм подается с открытых горных работ.

1. Определим производительность цеха крупного дробления. Расчет производительности ведем по Разумову К.А. 1, стр. 39-40. Проектом принята доставка руды 259 дней в году, в 2 смены по 7 часов, 5 дней в неделю.

Коэффициент учета крепости руды /2/

где: Q ц. др. - суточная производительность цеха дробления, т/сут

Коэффициент, учитывающий неравномерность свойств сырья /2/

где: Q ч..ц. др - часовая производительность цеха дробления, т/ч

k n - коэффициент учитывающий неравномерность свойств сырья,

n сут - расчетное число рабочих дней в году,

n см - количество смен в сутки,

t см - продолжительность смены,

k" - коэффициент учета крепости руды,

Расчет годового фонда рабочего времени:

Ц = (n сут. · n см. · t см) = 259 · 2 · 5 · = 2590 (3)

Коэффициент использования по времени:

k в = 2590/8760 = 0,29 д.е. = 29%

2. Расчет схемы дробления. Расчет ведем согласно стр. 68-78 2.

По заданию влажность исходной руды - 1,5%,т. е.

Порядок расчета:

1. Определим степень дробления

2. Примем степень дробления.

3. Определим максимальную крупность продуктов после дробления:

4. Определим ширину разгрузочных щелей дробилки, приняв по типовым характеристикам Z - закрупнение дробленого продукта относительно размера разгрузочной щели.

5. Проверим соответствие выбранной схемы дробления выпускаемому оборудованию.

Требования, которым должны удовлетворить дробилки, указаны в таблице 1.

Таблица 1

По ширине приемного отверстия и диапазону регулировки щели разгрузочной подходят дробилки марки ЩДП 12Х15.

Произведем расчет производительности дробилки по формуле (109/2/):

Q кат. = м 3 /ч

Q дроб. = Q кат. · с n · k f · k кр. · k вл. · k ц, m 3 /ч (7)

где с n - насыпная плотность руды = 1,6 т/м 3 ,

Q кат. - паспортная производительность дробилки, м 3 /ч

k f . , k вл. , k кр, k ц - поправочные коэффициенты на крепость (дробимость), насыпная плотность, крупность и влажность руды.

Значение коэффициентов находим по таблице k f =1,6; k кр =1,05; k вл. =1%;

Q кат. = S пр. / S н · Q н = 125 / 155 · 310 ? 250 м 3 /ч

Найдем фактические производительности дробилки для условий, определенных проектом:

Q дроб. = 250 · 1,6 · 1,00 · 1,05 · 1 · 1 = 420 т/ч

По результатам расчета определим количество дробилки:

Принимаем к установке ЩДП 12 х 15 - 1 шт.

2.2 Расчет схемы измельчения

Выбранная в проекте схема измельчения представляет собой разновидность ВА Разумов К.А. стр. 86.

Порядок расчета:

1. Определяем часовую производительность цеха измельчения, которая является фактически часовой производительностью всей фабрики, так как цех измельчения является главным корпусом рудоподготовки:

где 343- количество рабочих дней в году

24 - непрерывная рабочая неделя 3 смены по 8 часов (3х8=24 часа)

К в - коэффициент использования оборудования

К н - коэффициент, учитывающий неравномерность свойств сырья

Принимаем: К в =0,9 К н =1,0

Склад крупнодробленой руды обеспечивает двухсуточный запас руды:

V= 48 127,89 / 2,7 = 2398,22

Принимаем исходные данные

зададимся разжижением в сливе и песках классификации:

R 10 =3 R 11 =0,28

(R 13 взято на основе ряда 2 стр. 262 в зависимости от крупности слива)

в 1 -0,074 =10% - содержание класса - 0,074 мм в дробленой руде

в 10 -0,074 =80 % - содержание класса - 0,074 мм в сливе классификации.

Принимаем оптимальную циркуляционную нагрузку С опт =200%.

Порядок расчета:

Измельчение I и II стадий представлены схемой типа ВА стр. 86 рис. 23.

Расчет схемы В сводится к определению весов продуктов 2 и 5 (выхода продуктов находятся по общей формуле г n = Q n: Q 1)

Q 7 = Q 1 С опт =134,9 · 2 = 269,8 т/ч;

Q 4 = Q 5 = Q 3 + Q 7 = 404,7 т/ч;

г 4 = г 5 = 300 %;

г 3 = г 6 = 100 %

Расчет ведем согласно Разумову К.А. 1 стр. 107-108.

1. Расчет схемы А

Q 8 = Q 10 ; Q 11 = Q 12 ;

Q 9 = Q 8 + Q 12 = 134,88 + 89,26 = 224,14 т/ч

г 1 = 100 % ; г 8 = г 10 = 99,987 %;

г 11 = г 12 =Q 12: Q 1 = 89,26: 134,88 = 66,2 % ;

г 9 = Q 9: Q 1 = 224,14: 134,88 = 166,17 %

Технологическая схема обога щ ения молибдено-вольфрамовых руд .

Расчет по качественно-количественной схеме .

Исходные данные для расчета качественно-количественной схем ы.

Извлечение вольфрама в окончательный концентрат - е вольфрам 17 =68%

Извлечение вольфрама в коллективный концентрат - е вольфрам 15 =86%

Извлечение вольфрама в молибденовый концентрат - е вольфрам 21 =4 %

Извлечение молибдена в окончательный концентрат - е Мо 21 =77%

Извлечение молибдена в хвосты вольфрамовой флотации - е Мо 18 =98%

Извлечение молибдена в концентрат контрольной флотации - е Мо 19 =18%

Извлечение молибдена в коллективный концентрат - е Мо 15 =104%

Выход коллективного концентрата - г 15 =36%

Выход вольфрамого концентрата - г 17 =14%

Выход молибденового концентрата - г 21 =15%

Выход концентрата контрольной флотации - г 19 =28%

Определяем выхода продуктов обогащения

г 18 = г 15 - г 17 =36-14=22%

г 22 = г 18 - г 21 =22-15=7%

г 14 = г 13 + г 19 + г 22 =100+28+7=135%

г 16 = г 14 - г 15 =135-36=99%

г 20 = г 16 - г 19 =99-28=71%

Определяем массы продуктов обогащения

Q 13 = 127,89т/ч.

Q 1 4 = Q 13 х г 14 = 127,89х1,35=172,6 т/ч

Q 1 5 = Q 13 х г 15 = 127,89х0,36=46,0 т/ч

Q 1 6 = Q 13 х г 16 = 127,89х0,99=126,6т/ч

Q 1 7 = Q 13 х г 17 = 127,89х0,14=17,9 т/ч

Q 1 8 = Q 13 х г 18 = 127,89х0,22=28,1 т/ч

Q 1 9 = Q 13 х г 19 = 127,89х0,28=35,8 т/ч

Q 20 = Q 13 х г 20 = 127,89х0,71=90,8 т/ч

Q 21 = Q 13 х г 21 = 127,89х0,15=19,1 т/ч

Q 22 = Q 13 х г 22 = 127,89х0,07=8,9 т/ч

Определяем извлечение продуктов обогащения

Для вольфрама

е вольфрам 13 =100 %

е вольфрам 18 = е вольфрам 15 - е вольфрам 17 =86-68=28 %

е вольфрам 22 = е вольфрам 18 - е вольфрам 21 =28-14=14 %

е вольфрам 14 = е вольфрам 13 + е вольфрам 22 + е вольфрам 19 =100+14+10=124 %

е вольфрам 16 = е вольфрам 14 - е вольфрам 15 =124-86=38%

е вольфрам 20 = е вольфрам 13 - е вольфрам 17 + е вольфрам 21 =100 - 68+4=28%

е вольфрам 19 = е вольфрам 16 - е вольфрам 20 =38-28=10 %

для молибдена

е Мо 13 =100%

е Мо 22 = е Мо 18 - е Мо 21 =98-77=11 %

е Мо 14 = е Мо 13 + е Мо 22 + е Мо 19 =100+11+18=129 %

е Мо 16 = е Мо 14 - е Мо 15 =129-94=35 %

е Мо 17 = е Мо 15 - е Мо 18 =104-98=6%

е Мо 20 = е Мо 13 - е Мо 17 + е Мо 21 =100 - 6+77=17%

е Мо 19 = е Мо 16 - е Мо 20 =35-17=18%

Определяем количество металлов в продукт ах обогащения

Для вольфрама

14 =124 х0,5 / 135=0,46%

15 =86х0,5 / 36=1,19%

16 =38 х0,5 / 99=0,19%

17 =68 х0,5 / 14=2,43%

18 =28 х0,5 / 22=0,64%

19 =10 х0,5 / 28=0,18%

20 =28 х0,5 / 71=0,2%

21 =14 х0,5 / 15=0,46%

22 =14 х0,5 / 7=1%

Для молибдена

14 =129 х0,04/ 135=0,04%

15 =94х0,04/ 36=0,1%

16 =35 х0,04 / 99=0,01%

17 =6 х0,04 / 14=0,017%

18 =98 х0,04 / 22=0,18%

19 =18 х0,04 / 28=0,025%

20 =17 х0,04 / 71=0,009%

21 =77 х0,04 / 15=0,2%

22 =11 х0,04 / 7=0,06%

Таблица 3. Таблица качественно-количественной схемы обогащения

№ операции прод.

Q, т/ч

, %

медь , %

медь , %

цинк , %

цинк , %

I

Измельчение I стадия

поступает

дроблёная руда

выходит

измельчённая руда

II

Классификация

поступает

Измел ь ченн ы й продукт I ст. измельчения

Измел ь ченн ы й продукт II ст .измельчения

выходит

слив

пески

III

Измельчение I I стадия

поступает

Пески классификации

выходит

Измелченн ы й продукт

IV

Коллективная

Wo 3 -Mo флотация

поступает

Слив классификации

Хвосты Mo флотаци и

выходит

концентрат

хвост ы

V

Контрольная флотация

поступает

Хвост ы коллективной флотации

выходит

концентрат

хвост ы

VI

Вольфрамовая флотация

поступает

Концентрат коллективной флотации

выходит

концентрат

хвост ы

Мо флотация

поступает

Хвост ы Wo 3 флотации

выходит

концентрат

хвост ы

Расчет водно-шламовой схемы .

Целью расчета водно-шламовой схемы является: обеспечение оптимальных отношений Ж:Т в операциях схемы; определение количества воды, добавляемой в операции или, наоборот, выделяемой из продуктов при операциях обезвоживания; определение отношений Ж:Т в продуктах схемы; определение общей потребности воды и удельного расхода воды на тонну перерабатываемой руды.

Для получения высоких технологических показателей переработки руды каждую операцию технологической схемы необходимо проводить при оптимальных значениях отношения Ж:Т. Эти значения устанавливаются по данным испытаний обогатимости руды и практики работы действующих обогатительных фабрик.

Относительно низкий удельный расход воды на тонну перерабатываемой руды объясняется наличием на проектируемой фабрике внутрифабричного водооборота, так как сливы сгустителей подаются в цикл измельчение - классификация. Расход воды на смыв полов, промывку аппаратов и на другие цели составляет 10-15% от общего расхода.

Таблица 3. Таблица качественно-количественной схемы обогащения.

№ опе рации прод.

Наименование операций и продуктов

Q, т/ч

, %

R

W

I

Измельчение I стадия

поступает

дроблёная руда

0 , 0 25

выходит

измельчённая руда

II

Классификация

поступает

Измел ь ченн ы й продукт I ст. измельчения

Измел ь ченн ы й продукт II ст .измельчения

выходит

слив

пески

III

Измельчение I I стадия

поступает

Пески классификации

выходит

Измелченн ы й продукт

IV

Коллективная

Wo 3 -Mo флотация

поступает

Слив классификации

Концентрат контрольной флотации

Хвосты Мо флотаци и

выходит

концентрат

Хвост ы

V

Контрольная флотация

поступает

Хвост ы коллективной флотации

выходит

концентрат

Хвост ы

VI

Вольфрамовая флотация

Поступает

Концентрат коллективной флотации

Выходит

Концентрат

Хвост ы

Мо флотация

Поступает

Хвост ы вольфрамовой флотации

Выходит

концентрат

хвост ы

Выбор и расчёт дробилки .

Выбор типа и размера дробилки зависит от физических свойств руды, требуемой производительности дробилки, крупности дробленого продукта и твердости руды.

Вольфрамо-молибденовая руда по категории крепости является рудой средней крепости.

Максимальный размер куска руды, поступающей в операцию дробления равен 1000 мм.

Для дробления руды, поступающей с рудника, принимаю к установке щековую дробилку с простым качанием щеки ЩДП 12x15. *

Производительность дробилки, Q равна:

Q =q*L*i, т/ч,

где q - удельная производительность щековой дробилки на 1 см 2 площади разгрузочной щели, т/(см 2 * ч);

L - длина разгрузочной щели шековой дробилки, см;

i - ширина разгрузочной щели, см. /4/

По данным практики работы дробильного отделения обогатительной фабрики удельная производительность щековой дробилки равна 0,13 т/см 2 * час.

Производительность щековой дробилки определится:

Q= 0,13*150*15,5 = 302,25 т/ч.

Принятая к установке дробилка обеспечивает заданную производительность по руде.

Максимальный размер куска в питании дробилки составит:

120*0,8 = 96 см.

Выбор и расчёт колосникового грохота

Перед дробилкой устанавливается колосниковый грохот с размером отверстий 95 см (950 мм).

Необходимая площадь грохочения определяется по формуле:

где Q* - производительность, т/ч;

а - коэффициент равный ширине щели между колосниками, мм. /5/ По условиям компоновки ширину колосникового грохота принимаем равной 2,7 м, длину 4,5 м.

Практика работы дробильного отделения фабрики показывает, что в руде, доставляемой из карьера, содержится около 4,5 % кусков крупностью более 950 мм. Куски такой крупности доставляют фронтальным погрузчиком на рудный двор, где они подвергаются дроблению и снова подаются погрузчиком на колосниковый грохот.

2.3 Выбор и расчёт мельниц полусамоизмельчения

В последнее время при переработке золотосодержащих руд в мировой и отечественной практике в первой стадии измельчения все больше распространение находят мельницы полусамоизмельчения с последующим цианированием. В этом случае исключаются потери золота с железным скрапом и крошкой, снижается расход цианида при цианировании и улучшаются санитарные условия работы на кварцевых силикатных рудах. Поэтому принимаю к установке в первой стадии измельчения мельницу полусамоизмельчения (ПСИ).

1. Находим удельную производительность по вновь образованному классу действующей мельницы ПСИ, т/(м 3 * ч):

где Q - производительность действующей мельницы, т/ч;

- содержание класса -0,074 мм в сливе мельницы, %;

- содержание класса -0,074 мм в исходном продукте, %;

Д - диаметр действующей мельницы, м;

L - длина действующей мельницы, м.

2. Определяем удельную производительность проектируемой мельницы по вновь образованному классу:

где q 1 - удельная производительность работающей мельницы по тому же классу;

К и - коэффициент, учитывающий различия в измельчаемости проектируемой к переработке и перерабатываемой руды (Ки=1);

К к - коэффициент, учитывающий различие в крупности исходного и конечного продуктов измельчения на действующей и на проектируемой фабриках (К к =1);

К D - коэффициент, учитывающий различие в диаметрах барабанов проектируемой и работающей мельниц:

К D = ,

где D и D 1 соответственно номинальные диаметры барабанов проектируемой к установке и работающей мельниц. (К D =1,1);

К т - коэффициент, учитывающий различия в типе проектируемой и работающей мельниц (Кт=1).

q = 0,77*1*1*1,1*1 =0,85 т/(м 3 * ч).

Принимаю к установке мельницу самоизмельчения « Каскад» диаметром 7 м и длиной 2,3 м с рабочим объемом 81,05 м 3

3. Определяем производительность мельниц по руде по формуле:

где V - рабочий объем мельницы. /4/

4. Определяем расчетное число мельниц:

n- 101/125,72 = 0,8;

тогда и принятое будет равно 1 . Мельница «Каскад» обеспечивает заданную производительность.

Выбор и расчёт грохота II стадии грохочения .

Слив мельниц полусамоизмельчения насосами...

Подобные документы

    Выбор технологической схемы обогащения железной руды. Расчет мощности и выбор типа обогатительного сепаратора. Определение производительности сепараторов для сухой магнитной сепарации с верхним питанием. Технические параметры сепаратора 2ПБС-90/250.

    контрольная работа , добавлен 01.06.2014

    Определение общей степени дробления для цеха дробления. Подбор степени дробления. Расчет и выбор дробилок, колосникового грохота. Расчет грохота второй стадии дробления. Расчет схемы измельчения и выбор оборудования для измельчения и классификации.

    курсовая работа , добавлен 20.01.2016

    Изучение вещественного состава руды. Выбор и расчет мельниц первой и второй стадий измельчения, гидроциклонов, магнитных сепараторов. Расчет дешламатора для операции обесшламливания. Требования к качеству концентрата. Расчет водно-шламовой схемы.

    курсовая работа , добавлен 15.04.2015

    Выбор и обоснование схемы измельчения, классификации и обогащения руды. Вычисление выхода продукта и содержания в нем металла. Расчет качественно-количественной и водно-шламовой схемы. Методы контроля технологического процесса средствами автоматизации.

    курсовая работа , добавлен 23.10.2011

    Выбор и обоснование схемы дробления и измельчения, дробильного, классифицирующего и измельчительного оборудования. Характеристика крупности исходной руды. Расчет стадий дробления, грохотов, мельниц, классификатора. Ситовые характеристики крупности.

    курсовая работа , добавлен 19.11.2013

    Геологическая характеристика месторождения. Характеристика перерабатываемой руды, разработка и расчет схемы ее дробления. Выбор и расчет оборудования для дробильного отделения. Определение количества смен и трудозатрат на обеспечение технологии дробления.

    курсовая работа , добавлен 25.02.2012

    Технология обогащения железной руды и концентрата, анализ опыта зарубежных предприятий. Характеристика минерального состава руды, требования к качеству концентрата. Технологический расчет водно-шламовой и качественно-количественной схемы обогащения.

    курсовая работа , добавлен 23.10.2011

    Построение качественно-количественной схемы подготовительных операций дробления, грохочения железной руды: выбор метода, выход продуктов. Обзор рекомендуемого оборудования. Магнитно-гравитационная технология и флотационное обогащение железной руды.

    курсовая работа , добавлен 09.01.2012

    Особенности и этапы осуществления технологии дробления. Уточненный расчет схемы грохочения. Выбор и расчет дробилок. Определение потребности оборудования для рудоподготовки, вспомогательного оборудования. Положения техники безопасности в цехе дробления.

    курсовая работа , добавлен 12.01.2015

    Выбор и расчет основного технологического оборудования процесса переработки минерального сырья, питателей. Расчет операций грохочения. Выбор и обоснование количества основного оборудования, их технические характеристики, назначение и основные функции.

Магнитные методы широко применяются при обогащении руд черных, цветных и редких металлов и в других областях промышленности, в том числе и пищевой. Они используются для обогащения железных, марганцевых, медно-никелевых вольфрамовых руд, а также для доводки концентратов руд редких металлов, регенерации ферромагнитных утяжелителей в установках для разделения в тяжелых суспензиях, для удаления железных примесей из кварцевых песков, пирита из угля и др.

Все минералы различны по удельной магнитной восприимчивости и для извлечения слабомагнитных минералов необходимы поля с высокими магнитными характеристиками в рабочей зоне сепаратора.

В рудах редких металлов, в частности вольфрама и ниобия и тантала, основные минералы в виде вольфрамита и колумбита-танталита обладают магнитными свойствами и возможно применение высоко градиентной магнитной сепарации с извлечением в магнитную фракцию рудных минералов.

В лаборатории магнитных методов обогащения НПО “ЭРГА” проводились испытания вольфрамовой и ниобий-танталовой руды Спойкойнинского и Орловского месторождения. Для сухой магнитной сепарации применялся валковый сепаратор СМВИ производства НПО “ЭРГА”

Сепарация вольфрамовой и ниобий-танталовой руды проходила по схеме №1. Результаты представлены в таблице.

По результатам работы можно сделать следующие выводы:

Содержание в хвостах сепарации полезных компонентов составляет: WO3 по первой схеме сепарации - 0,031±0,011%, по второй - 0,048±0,013%; Ta 2 O 5 и Nb 2 O 5 -0,005±0,003%. Это говорит о том, что индукции в рабочей зоне сепаратора хватает для извлечения слабомагнитных минералов в магнитную фракцию и магнитный сепаратор типа СМВИ пригоден для получения отвальных хвостов.

Испытания магнитного сепаратора СМВИ проводились также на бадделеитовой руде с целью извлечения слабомагнитных минералов железа (гематита) в хвосты и очистки циркониевого концентрата.

Результатом сепарации стало снижение содержания железа в немагнитном продукте с 5,39% до 0,63% с извлечением 93%. Содержание циркония в концентрате увеличилось на 12%.

Схема работы сепаратора представлены на Рис. 1

Применение магнитного сепаратора СМВИ нашло широкое применение при обогащении различных руд. СМВИ может служить как основным обогатительным оборудованием, так и в качестве доводки концентратов. Подтверждению этому служат успешные полупромышленные испытания данного оборудования.

Минералы и руды вольфрама

Из минералов вольфрама практическое значение имеют минералы группы вольфрамита и шеелит.

Вольфрамит (xFeWO4·yMnWO4) представляет собой изоморфную смесь вольфраматов железа и марганца. Если в минерале содержится более 80% железа, то минерал называют ферберитом. Если в минерале более 80% марганца, то минерал называют гюбернитом.

Шеелит CaWO4 представляет собой практически чистый вольфрамат кальция.

Вольфрамовые руды содержат незначительное количество вольфрама. Минимальное содержание WO3, при котором целесообразна их переработка. составляет 0,14-0,15% для крупных месторождений и 0,4-0,5% для мелких месторождений. В рудах вольфраму сопутствует олово в виде касситерита, а также минералы молибдена, висмута, мышьяка и меди. Основной пустой породой является кремнезём.

Вольфрамовые руды подвергаются обогащению. Вольфрамитовые руды обогащают гравитационным методом, а шеелитовые - флотацией.

Схемы обогащения вольфрамовых руд разнообразны и сложны. В них сочетаются гравитационное обогащение с магнитной сепарацией, флотогравитацией и флотацией. Комбинируя различные методы обогащения, из руд получают концентраты, содержащие до 55-72% WO3. Извлечение вольфрама из руды в концентрат составляет 82-90%.

Сoстав вольфрамовых концентратов колеблется в следующих пределах,%: WO3-40-72; MnO-0,008-18; SiO2-5-10; Mo-0.008-0,25; S-0,5-4; Sn-0,03-1,5; As-0,01-0,05; P-0,01-0,11; Cu-0,1-0,22.

Технологические схемы переработки вольфрамовых концентратов подразделяются на две группы: щелочные и кислотные.

Способы переработки вольфрамовых концентратов

Независимо от способа переработки вольфрамитовых и шеелитовых концентратов первой стадией их переработки является вскрытие, представляющее собой превращение минералов вольфрама в легкорастворимые химические соединения.

Вольфрамитовые концентраты вскрывают спеканием или сплавлением с содой при температуре 800-900оС, в основе которого лежат химические реакции:

4FeWO4 + 4Na2CO3 + O2 = 4Na2WO4 + 2Fe2O3 +4CO2 (1)

6MnWO4 + 6Na2CO3 + O2 = 6Na2WO4 + 2Mn3O4 +6CO2 (2)

При спекании шеелитовых концентратов при температуре 800-900оС протекают следующие реакции:

CaWO4 + Na2CO3 = Na2WO4+ CaCO3 (3)

CaWO4 + Na2CO3 = Na2WO4+ CaO + CO2 (4)

C целью снижения расхода соды и предотвращения образования свободного оксида кальция в шихту добавляют кремнезём для связывания оксида кальция в труднорастворимый силикат:

2CaWO4 + 2Na2CO3 + SiO2 = 2Na2WO4+ Ca2SiO4 + CO2 (5)

Спекание шеелитового концентрата, содой и кремнезёмом проводят в барабанных печах при температуре 850-900оС.

Полученный спёк (сплав) выщелачивают водой. При выщелачивании в раствор переходят вольфрамат натрия Na2WO4 и растворимые примеси (Na2SiO3, Na2HPO4, Na2AsO4, Na2MoO4, Na2SO4) и избыточная сода. Выщелачивание ведут при температуре 80-90оС в стальных реакторах с механическим перемешиванием, работающих в периодическом режиме, или в барабанных вращающихся печах непрерывного действия. Извлечение вольфрама в раствор составляет 98-99%. Раствор после выщелачивания содержит 150-200 г/л WO3. Раствор подвергают фильтрации, и после отделения твёрдого остатка направляют на очистку от кремния, мышьяка, фосфора и молибдена.

Очистка от кремния основана на гидролитическом разложении Na2SiO3 при кипячении раствора, нейтрализованного при рН = 8-9. Нейтрализацию избыточной соды в растворе осуществляют соляной кислотой. В результате гидролиза образуется малорастворимая кремневая кислота:

Na2SiO3 + 2H2O = 2NaOH + H2SiO3 (6)

Для очистки от фосфора и мышьяка используют метод осаждения фосфат- и арсенат ионов в виде малорастворимых аммонийно-магниевых солей:

Na2HPO4 + MgCl2+ NH4OH = Mg(NH4)PO4 + 2NaCl + H2O (7)

Na2HAsO4 + MgCl2+ NH4OH = Mg(NH4)AsO4 + 2NaCl + H2O (8)

Очистка от молибдена основана на разложении сульфосоли молибдена которая образуется при добавлении к раствору вольфрамата натрия сернистого натрия:

Na2MoO4 + 4NaHS = Na2MoS4 + 4NaOH (9)

При последующем подкислении раствора до рН = 2,5-3,0 сульфосоль разрушается с выделением малорастворимого трисульфида молибдена:

Na2MoS4 + 2HCl = MoS3 + 2NaCl + H2S (10)

Из очищенного раствора вольфрамата натрия с помощью СaCl2 сначала осаждают вольфрамат кальция:

Na2WO4 + СaCl2 = CaWO4 + 2NaCl. (11)

Реакцию проводят в кипящем растворе, содержащем 0,3-0.5% щёлочи

при перемешивании механической мешалкой. Отмытый осадок вольфрамата кальция в виде пульпы или пасты подвергается разложению соляной кислотой:

CaWO4 + 2HCl = H2WO4 + CaCl2 (12)

При разложении поддерживают высокую кислотность пульпы порядка 90-120 г/л HCl, что обеспечивает отделение от осадка вольфрамовой кислоты примесей фосфора, мышьяка и отчасти молибдена, которые растворимы в соляной кислоте.

Вольфрамовую кислоту из очищенного раствора вольфрамата натрия можно получить также непосредственным осаждением соляной кислотой При подкислении раствора соляной кислотой H2WO4 выпадает в осадок в следствие гидролиза вольфрамата натрия:

Na2WO4 + 2H2О = 2NaOH + H2WO4 (11)

Образующаяся в результате реакции гидролиза щёлочь реагирует с соляной кислотой:

2NaOH + 2HCl = 2NaCl + 2H2O (12)

Сложение реакций (8.11) и (8.12) даёт суммарную реакцию осаждения вольфрамовой кислоты соляной кислотой:

Na2WO4 + 2HCl = 2NaCl + H2WO4 (13)

Однако в том случае возникают большие трудности отмывки осадка от ионов натрия. Поэтому в настоящее время последний метод осаждения вольфрамовой кислоты применяется очень редко.

Полученная осаждением техническая вольфрамовая кислота содержит примеси и поэтому нуждается в очистке.

Наибольшее распространение получил аммиачный способ очистки технической вольфрамовой кислоты. Она основана на том, вольфрамовая кислота хорошо растворяется в аммиачных растворах, в то время как значительная часть содержащихся в ней примесей в растворах аммиака нерастворимы:

H2WO4 + 2NH4OH = (NH4)2WO4 + 2H2O (14)

Аммиачные растворы вольфрамовой кислоты могут содержать примеси молибдена и солей щелочных металлов.

Более глубокая очистка достигается выделением из аммиачного раствора крупных кристаллов паравольфрамата аммония, которые получают путём выпаривания раствора:

12(NH4)2WO4 = (NH4)10W12O41·5Н2О + 14NH3 + 2H2O (15)

вольфрам кислота ангидрид осаждение

Более глубокая кристаллизация нецелесообразна во избежание загрязнения кристаллов примесями. Из маточного раствора, обогащённого примесями, вольфрам осаждают в виде CaWO4 или H2WO4 и возвращают на предыдущие переделы.

Кристаллы паравольфрамата отжимают на фильтрах, затем на центрифуге, промывают холодной водой и сушат.

Окcид вольфрама WO3 получают путём прокаливания вольфрамовой кислоты или паравольфрамата во вращающейся трубчатой печи с трубой из нержавеющей стали и обогреваемой электричеством при температуре 500-850оС:

H2WO4 = WO3 + H2O (16)

(NH4)10W12O41·5Н2О = 12WO3 + 10NH3 +10H2O (17)

В трёхоксиде вольфрама, предназначенного для производства вольфрама, содержание WO3 должно быть не ниже 99,95%, а для производства твёрдых сплавов - не ниже 99,9%