Уравнения для населенностей энергетических уровней. Методы создания инверсной разности населенности (способы накачки активной среды) Усиление в средах с инверсной населенностью

Для того, чтобы поучить усиление падающего света, необходимо каким-либо образом обратить населенность уровней. Т.е. сделать так, чтобы большему значению энергии соответствовало и большее число атомов . При этом говорят, что совокупность атомов имеет инверсную (обратную) населенность уровней.

Отношение числа атомов на уровнях и равно:

В случае инверсной населенности . Отсюда следует, что показатель экспоненты должен быть больше нуля ‑ . Но . Следовательно, чтобы показатель экспоненты был больше нуля, необходимо чтобы температура была отрицательной ‑ .

Поэтому состояние с инверсной населенностью уровней называют иногда состоянием с отрицательной температурой. Но это выражение носит условный характер, потому что само понятие температуры применимо к равновесным состояниям, а состояние с инверсной населенностью является неравновесным состоянием.

В случае инверсной населенности, свет, проходя через вещество, будет усиливаться. Формально это соответствует тому, что в законе Бугера коэффициент поглощения будет отрицательным. Т.е. совокупность атомов с инверсной населенностью уровней можно рассматривать как среду, с отрицательным коэффициентом поглощения.


Итак, для усиления света веществом нам необходимо создать инверсную населенность уровней этого вещества. Посмотрим, как это делается на примере рубинового лазера.

Рубин представляет собой окись алюминия , в которой некоторые атомы алюминия заменены атомами хрома . Этот рубин облучают широким спектром частот электромагнитных волн. При этом ионы хрома переходят в возбужденное состояние (см. рис. 4). Ионы алюминия в этом деле заметной роли не играют.

Состояние с энергией представляет собой целую полосу, вследствие взаимодействия ионов с кристаллической решеткой. С уровня для ионов хрома возможны два пути.

1. Возвращение в исходное состояние с энергией с испусканием фотона.

2. Переход в метастабильное состояние с энергией путем теплового взаимодействия с ионами кристаллической решетки алюминия.

Время жизни на уровне как и обычно, равно времени жизни в возбужденном состоянии ‑ . Спонтанный переход на уровень обозначен стрелкой , а переход на метастабильный уровень обозначен стрелкой .

Расчеты и эксперимент показывают, что вероятность перехода много больше вероятности перехода . Кроме того, переход из метастабильного состояния с энергией в основное состояние запрещен правилами отбора (правила отбора не абсолютно строги, они указывают лишь большую или меньшую вероятность перехода).



Поэтому время жизни на метастабильном уровне составляет , что в сто тысяч раз превышает время жизни на уровне .

Таким образом, при достаточно большом числе атомов хрома может возникнуть инверсная населенность уровня ‑ число атомов на уровне превысит число атомов на уровне , т.е. может получиться то, что мы желаем.

Спонтанный переход с уровня на основной уровень обозначен стрелкой , Возникающий при этом переходе фотон может вызвать вынужденное излучение следующего фотона, который обозначен стрелкой . Этот еще одного и т.д. Т.е. образуется каскад фотонов.

Рассмотрим теперь техническое устройство рубинового лазера.

Он представляет собой стержень, диаметром порядка и длиной . Торцы стержня строго параллельны друг другу и тщательно отшлифованы. Один торец представляет собой идеальное зеркало, второй ‑ полупрозрачное зеркало, пропускающее около падающей энергии.

Вокруг рубинового стержня устанавливают несколько витков лампы накачки ‑ ксеноновой лампы, работающей в импульсном режиме.

Итак, в теле стержня образовались вынужденные фотоны. Те фотоны, направление распространения которых составляет малые углы с осью стержня, будут многократно проходить стержень и вызывать вынужденное излучение метастабильных атомов хрома. Вторичные фотоны будут иметь то же направление, что и первичные, т.е. вдоль оси стержня. Фотоны другого направления не разовьют значительный каскад и выйдут из игры. При достаточной интенсивности пучка часть его выходит наружу.

Рубиновые лазеры работают в импульсном режиме с частотой повторения несколько импульсов в минуту. Кроме того, внутри них происходит выделение большого количества тепла, поэтому их приходится интенсивно охлаждать.

Рассмотрим теперь работу газового лазера, в частности гелий-неонового.

Он состоит из кварцевой трубки, внутри которой находится смесь газов гелия и неона. Гелий находится под давлением , а неон под давлением , при этом атомов гелия приблизительно в 10 раз больше, чем атомов неона. Основными излучающими атомами здесь являются атомы неона, а атомы гелия играют вспомогательную роль для создания инверсной населенности атомов неона.

Подкачка энергии в этом лазере осуществляется за счет энергии тлеющего разряда. При этом атомы гелия возбуждаются и переходят в возбужденное состояние ( см. рис. 5) . Это состояние для атомов гелия является метастабильным, т.е. обратный оптический переход запрещен правилами отбора. Поэтому атомы гелия могут перейти в невозбужденное состояние, передавая энергию атомам неона при столкновениях. Вследствие этого атомы неона приходят в возбужденное состояние , которое близко состоянию для гелия. Атомы неона возбуждаются как за сет энергии тлеющего разряда, так и за счет столкновений с атомами гелия.

Кроме того разгружают уровень , подбирая такие размеры трубки, чтобы атомы неона, находясь на уровне , при соударениях со стенками передавали бы им энергию, переходя на основной уровень.

Вследствие этих процессов происходит инверсная населенность уровня для неона. С уровня возможен переход на уровень .

Основным конструктивным элементом этого лазера является кварцевая газоразрядная трубка, диаметром около . В ней расположены электроды для создания электрического разряда. По торцам трубки расположены плоско-параллельные зеркала, одно из которых, переднее, полупрозрачное. Условия для усиления возникают только у тех фотонов, которые вылетают параллельно оси лазера.

Рабочей частотой лазера является переход . Правилами отбора разрешено около тридцати переходов. Для выделения одной частоты зеркала делают многослойными, настроенными на отражение только одной определенной волны. Широко распространены лазеры, излучающие волны с длиной . Но наиболее интенсивным является переход с длиной волны , т.е. в инфракрасной области спектра.

Газовые лазеры работают в непрерывном режиме и не нуждаются в интенсивном охлаждении.

Отличительными особенностями лазерного излучения являются.

1. Временная и пространственная когерентность.

2. Строгая монохроматичность .

3. Большая мощность

4. Узость лазерного пучка.

Лекция 15. (2 часа)

При хаотическом тепловом движении распределение энергии среди атомов неравномерно. Некоторая часть атомов возбуждена, что соответствует их нахождению на более высоких, чем основной, уровнях энергии. В условиях теплового равновесия и при отсутствии внешнего электромагнитного поля большая часть атомов обладает минимумом энергии. Образно говоря, населенность верхних уровней меньше населенности нижних.

Под влиянием энергетических воздействий - повышения температуры, освещения, бомбардировки быстрыми частицами - доля возбужденных атомов возрастает, т. е. населенность верхних уровней увеличивается. Этот процесс иллюстрируется рисунком 102, а, б.

Казалось бы, по мере повышения температуры можно получить такое распределение частиц по уровням, при котором населенность верхних уровней больше, чем нижних. Но это не так. Ведь возбужденное состояние неустойчиво. По мере увеличения заселенности верхних уровней увеличивается вероятность спонтанных переходов, которые сопровождаются излучением.

В 1939 г. советский физик В. А. Фабрикант высказал предположение о возможности создания такого распределения частиц по энергиям, при котором число возбужденных атомов больше числа атомов, находящихся в основном состоянии (рис. 102, в). Такое состояние называют состоянием с инверсной населенностью уровней (от латинского inversio - переворачивать).

Выясним, какие особые свойства присущи состоянию с инверсной населенностью уровней.

При распространении света в веществе обычно происходит поглощение света. Это происходит потому, что в состоянии термодинамического равновесия число невозбужденных атомов в веществе много больше, чем число возбужденных, и, следовательно, фотоны чаще взаимодействуют с невозбужденными атомами, т. е. поглощаются веществом.

В веществе же с инверсной населенностью уровней число возбужденных атомов больше числа невозбужденных. При этом уменьшается вероятность встречи фотонов с невозбужденным атомом, т. е. уменьшается вероятность поглощения фотонов. Вещество становится более прозрачным или даже способным усиливать свет. Действительно, если в нем движется фотон, энергия которого в точности равна разности энергий атомов в состояниях (рис. 102, в), то, взаимодействуя с возбужденным атомом, такой фотон вызовет индуцированное излучение. В результате появится второй такой же фотон. Взаимодействуя с другими двумя возбужденными атомами, эти два фотона вызовут высвечивание еще двух атомов. В конечном счете вместо одного фотона из вещества выйдет много фотонов, что является усилением света. Усилению света способствует то обстоятельство, что фотоны с частотой

слабо поглощаются веществом. Среду называют активной, если в ней число индуцированных фотонов превышает число поглощенных.

Эти особенности сред с инверсной населенностью уровней были установлены в 1951 г. В. А. Фабрикантом, М. М. Вудынским и Ф. А. Бутаевой.

В 1964 г. Государственный комитет по делам изобретений и открытий выдал этим ученым диплом на открытие, в котором, в частности, говорится: «Установлено неизвестное ранее явление усиления электромагнитных волн при прохождении через среду, в которой концентрация частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям, избыточна по сравнению с концентрацией в равновесном состоянии».


Лекция 1 2 .

Природа света. Спонтанное и вынужденное излучение. Инверсия заселенности энергетических уровней. Принцип работы лазера.

1. Атомы могут находиться в стационарных состояниях с дискретными значениями энергии сколь угодно долгое время, не излучая энергии.

1.1. Переход из одного стационарного состояния в другое стационарное состояние сопровождается поглощением или испусканием кванта электромагнитного излучения.

1.2. При поглощении кванта электромагнитного излучения электрон переходит на уровень с большим энергетическим значением, а сам атом переходит в более высокоэнергетическое возбужденное состояние, в котором может находиться только в течение 10-8 с.

1.2.1. Так как для перехода на более высокоэнергетический уровень необходимо строго определенное значение энергии, то при возбуждении атомов квантами электромагнитного излучения поглощаются только те кванты, энергия которых равна разнице между энергиями исходного и конечного состояний.

1.2.2. Если вещество возбуждается излучением со сплошным спектром, то поглощаться будут только те кванты, энергии которых соответствуют энергиям перехода электрона на более высокоэнергетические уровни. В результате прохождения такого излучения через вещество в спектре этого излучения появляются темные линии, которые называются спектром поглощения .

1.3. Переход атома в основное состояние может происходить как непосредственно, так и путем последовательного перемещения электрона на уровни с меньшей энергией.


1.4. Переход электрона на уровень с меньшей энергией сопровождается испусканием кванта электромагнитного излучения, энергия которого равна разности энергий уровней исходного и конечного состояний.

1.5. Так как возбужденных состояний может быть достаточно много, то испускаемые кванты имеют различную энергию, а, следовательно, различную длину волны.

1.6. Поскольку возбужденные состояния имеют дискретные значения энергии, совокупность испускаемых квантов образует линейчатый спектр.

1.6.1. Переходы электронов с высокоэнергетических уровней на один какой-то уровень образуют серию линий в спектре, параметры которой являются характерными для данного элемента и отличаются от параметров аналогичной серии другого элемента.

1.6.2. Совокупность серий образует спектр характеристического излучения вещества, который является однозначной характеристикой данного вещества.

1.6.3. На основе измерений параметров характеристического спектра созданы методы спектрального анализа.

2. Испускание квантов возбужденным атомом в отсутствие внешнего воздействия обычно происходит спонтанно, а возникающее при этом излучение называется спонтанным излучением .

2.1. При спонтанном испускании каждый квант возникает случайным образом и имеет свою фазу колебаний и поэтому спонтанное излучение не обладает временной когерентностью .

2.2. В соответствии с квантовой теорией вероятность рν нахождения атома в состоянии с энергией εν подчиняется распределению Больцмана

которое позволяет при заданном значении величины подводимой к атому энергии определить способность электрона занять тот или иной энергетический уровень.

2.3. Количество электронов, одновременно находящихся на энергетическом уровне называется заселенностью уровня .

2.4. При отсутствии внешних воздействий равновесная при данной температуре заселенность уровней поддерживается спонтанным испусканием квантов.

3. Вид спектра спонтанного излучения зависит от состояния атома, излучающего этот спектр.

3.1. Изолированные атомы испускают излучение с атомным спектром .

3.1.1. Состав атомного спектра для атома водорода и водородоподобных ионов может быть легко рассчитан по формуле Бальмера-Ридберга.

3.1.2. Для других атомов и ионов расчет атомных спектров представляет более сложную задачу.

3.2. Если атомы образуют молекулу, то возникает молекулярный спектр (полосатый спектр ). Каждая полоса в этом спектре представляет собой совокупность тесно расположенных спектральных линий.

3.2.1. Как и в атомных спектрах, каждая линия молекулярного спектра возникает в результате изменения энергии молекулы.

3.2.2. Энергию молекулы можно представить в виде

где – энергия поступательного движения молекулы; – энергия вращательного движения молекулы; – энергия колебательного движения атомов молекулы друг относительно друга; – энергия электронной оболочки молекулы; – внутриядерная энергия молекулы.

3.2.3. Энергия поступательного движения молекулы не квантована и ее изменения не могут привести к возникновению молекулярного спектра, а влияние на молекулярный спектр в первом приближении можно не учитывать.


3.2.4. По правилу частот Бора

где , , – изменения соответствующих частей энергии молекулы.

3.2.5. Образование полос происходит из-за того, что

3.2.6. Молекулярные спектры имеют довольно сложный вид.

3.2.6.1. Спектр, обусловленный только переходом с одного вращательного уровня на другой вращательный уровень (вращательный спектр ), располагается в далекой инфракрасной области (длина волны 0,1 ¸ 1 мм).

3.2.6.2. Спектр, обусловленный только переходом с одного колебательного уровня на другой колебательный уровень (колебательный спектр ), располагается в инфракрасной области (длина волны 1 ¸ 10 мкм).

3.2.6.3. Спектр, обусловленный только переходом с одного электронного уровня на другой электронный уровень (атомный спектр ), располагается в видимой, ультрафиолетовой и рентгеновской областях спектра (длина волны 0,8 мкм ¸ 10-10 м).

3.2.6.4. При изменении энергии колебательного движения у молекулы может измениться и энергия вращательного движения. При этом возникает колебательно-вращательный спектр , который представляет собой колебательный спектр, каждая линия которого сопровождается близко расположенными линиями вращательных переходов.

3.2.6.5. Переходы между электронными уровнями молекулы часто сопровождаются переходами между колебательными уровнями. В результате возникает спектр, называемый электронно-колебательным , а, поскольку колебательным переходам сопутствуют вращательные переходы, то колебательные уровни в электронно-колебательном спектре представляются в виде размытых полос.

3.3. Комбинационное рассеяние (самостоятельное изучение ).

4. Переход атомов из более возбужденного состояния в менее возбужденное состояние под влиянием воздействия внешнего кванта электромагнитного излучения называется вынужденным излучением .

4.1. Вероятность вынужденного излучения зависит от энергии кванта, воздействующего на возбужденные атомы. Максимальная вероятность возникновения вынужденного излучения будет при равенстве энергии возбуждающего кванта энергии перехода.

4.2. При прохождении кванта через систему возбужденных атомов возникает поток квантов, энергия которых равна энергии возбуждающего кванта (эффект оптического усиления ).

4.3. Поглощение света в веществе происходит в соответствии с законом Бугера-Ламберта

где – натуральный показатель поглощения, а х – толщина поглощающего слоя.

Усиление потока квантов при прохождении через вещество аналогично отрицательному коэффициенту поглощения (отрицательная адсорбция света ).

4.4. Для среды с отрицательным коэффициентом поглощения справедлив закон Бугера-Ламберта-Фабриканта

Интенсивность света резко возрастает с увеличением толщины слоя.

4.5. Среда с отрицательным коэффициентом поглощения называется активной средой .

5. Между двумя энергетическими уровнями возможны три типа переходов

    переход электрона в более высокоэнергетическое состояние при поглощении кванта (1); спонтанный переход электрона в менее высокоэнергетическое состояние (2); вынужденный переход электрона в менее высокоэнергетическое состояние (3).

5.1. Количество электронов на возбужденных уровнях подчиняется распределению Больцмана и называется заселенностью уровня .

5.2. При обычной схеме излучения заселенность N более высокоэнергетического уровня меньше, чем заселенность менее высокоэнергетического уровня.

5.3. Число актов поглощения кванта пропорционально заселенности N 1 менее высокоэнергетического уровня, а число актов испускания пропорционально заселенности N 2 более высокоэнергетического уровня.

5.4. Натуральный показатель поглощения в законе Бугера-Ламберта пропорционален разности между числом актов поглощения и испускания

где k – коэффициент пропорциональности.

5.5. При обычной схеме излучения больцмановское распределении электронов за счет спонтанных переходов ().

5.6. За счет интенсивного возбуждения системы атомов (накачка ) можно добиться такого нарушения больцмановского распределения, что N 2 станет больше N 1 (инверсная заселенность ). Тогда натуральный показатель поглощения становится меньше нуля и мы получаем закон Бугера-Ламберта-Фабриканта.

6. Возникновение вынужденного излучения реализовано в лазерах .

6.1. Первоначально для получения вынужденного излучения использовалась трехуровневая схема в рубине, кристаллическая решетка которого содержит примесь Cr, создающего узкий двойной дополнительный уровень В в зоне возбужденных состояний.

6.1.1. При возбуждении атомной системы светом ксеноновой лампы (оптической накачке ) большое количество электроновпри поглощении квантов (1) переводится с основного уровня А на возбужденные уровни C и D .

6.1.2. Электроны с этих уровней посредством спонтанных переходов (2) без излучения заселяют менее высокоэнергетический уровень В , создавая на нем инверсную заселенность. Энергия перехода при этом передается кристаллической решетке и повышает температуру вещества.

6.1.3. Переходы с инверсного уровня В на основной А осуществляются под действием квантов с энергией, соответствующей разности энергий между инверсным уровнем и основным уровнем.

6.2. Аппаратно схема лазера представляет собой стержень А из активного вещества, ограниченный с торцов двумя зеркалами – непрозрачным В и полупрозрачным С .

6.2.1. После накачки активного вещества первый же переход с инверсного уровня на основной приводит к образованию кванта, запускающего процесс возникновения лазерного излучения.

6.2.2. Распространение кванта в активной среде приводит к инициации вынужденных переходов. Наибольшей эффективностью в соответствии с законом Бугера-Ламберта-Фабриканта обладают кванты, распространяющиеся вдоль стержня.

6.2.3. При отражении от полупрозрачного зеркала за пределы активной среды выходит часть потока квантов, которая и является лазерным излучением. Остальная часть потока квантов возвращается в активную среду, для инициации вынужденных переходов.

6.2.4. Небольшое отклонение направления распространения квантов от оси кристалла устраняется при помощи искривленной поверхности отражающих зеркал В и С .

6.2.5. Эффект квантового усиления значительно увеличивается при многократном прохождении инициирующих квантов через активную среду.

6.2.6. Инверсный уровень хрома состоит из двух подуровней и потому излучение рубинового лазера состоит из квантов с двумя длинами волн (0,6927 нм и 0,6943 нм).

7. В настоящее время в качестве активной среды в лазерах используются:

    твердые тела (рубин; иттрий-алюминиевыйгранат, активированный неодимом; стекло, активированное неодимом); газы и газовые смеси (N2; CO; CO2; пары металлов); жидкости (растворы органических красителей); полупроводники.

7.1. Лазерное излучение в твердых телах возникает при переходах между энергетическими уровнями примесных атомов. Длина волны в пределах 0,35¸1,06 мкм при мощности до 1 кВт.

7.2. Лазерное излучение в газах чаще всего возникает при электронно-колебательных переходах между различными электронными состояниями (N2-лазер, эксимерные лазеры) или на колебательно-вращательных переходах в пределах одного электронного состояния (СО2-, СО-лазеры). Длина волны в пределах 5¸11 мкм при мощности до 15 кВт.

7.3. Лазерное излучение в жидкостях при электронных переходах между энергетическими уровнями красителей. Длина волны в пределах 0,2¸5 мкм при мощности до 1,5 Вт. Возможна плавная перестройка длины волны.

7.4. Инверсия заселенности в полупроводниковых лазерах создается на переходах между состояниями в валентных зонах полупроводникового кристалла, а не между дискретными уровнями. Длина волны в пределах 0,75¸30 мкм при мощности до 0,5 Вт.

8. Основными характеристиками лазерного излучения являются:

    Пространственная и временная когерентность излучения . Время когерентности достигает 10-3 с. Это соответствует длине когерентности примерно 105 м. Хорошая монохроматичность излучения . Примесные уровни значительно уже уровней основного вещества и потому спектральная ширина излучения может не превышать 10-11¸10-10 м. Малая расходимость пучка :

0,5¸10 мрад для газовых лазеров;

0,2¸5 мрад для твердотельных лазеров.

    Высокая плотность мощности в сфокусированном пучке (до 1010 Вт/м2).

Инверсия населённостей

в физике, состояние вещества, при котором более высокие уровни энергии составляющих его частиц (атомов, молекул и т. п.) больше «населены» частицами, чем нижние (см. Населённость уровня). В обычных условиях (при тепловом равновесии) имеет место обратное соотношение: на верхних уровнях находится меньше частиц, чем на нижних (см. Больцмана статистика).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Инверсия населённостей" в других словарях:

    - (от лат. inversio переворачивание, перестановка), неравновесное состояние в ва, при к ром для составляющих его ч ц (атомов, молекул и т. п.) выполняется неравенство: N2/g2>N1/g1, где N2 и N1 населённости верх. и ниж. уровней энергии, g2 и g1 их… … Физическая энциклопедия

    Современная энциклопедия

    Инверсия населённостей - (от латинского inversio переворачивание, перестановка), неравновесное состояние вещества, при котором в отличие от обычного состояния теплового равновесия количество составляющих вещество частиц (атомов, молекул), находящихся на более высоких… … Иллюстрированный энциклопедический словарь

    ИНВЕРСИЯ НАСЕЛЁННОСТЕЙ - неравновесное состояние вещества, при котором населённость (концентрация) составляющих его частиц (электронов, атомов, молекул и т.п.) на возбуждённых (верхних) уровнях энергии выше населённости равновесного (нижнего) уровня; является необходимым … Большая политехническая энциклопедия

    Неравновесное состояние вещества, при котором населённость верхнего из пары уровней энергии одного типа атомов (ионов, молекул), входящих в состав вещества, превышает населённость нижнего. Инверсия населённостей лежит в основе работы лазеров и… … Энциклопедический словарь

    Неравновесное состояние в ва, при к ром населённость верхнего из пары уровней энергии одного типа атомов (ионов, молекул), входящих в состав в ва, превышает населённость нижнего. И. и. лежит в основе работы лазеров и др. приборов квантовой… … Естествознание. Энциклопедический словарь

    Одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

    Инверсия электронных населённостей одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

    Инверсия электронных населённостей одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

Для создания активной Среды необходимо избирательное возбуждение атомов, обеспечивающее преимущественное заселение одного или нескольких уровней энергии. Одним из наиболее простых и эффективных методов является метод оптической накачки, который был использован в первом Л. на рубине. Рубин представляет собой кристалл окиси алюминия Al2O3 с примесью (~ 0,05%) ионов Cr3+, замещающих атомы Al. Уровни энергии иона Cr3+ в рубине. Поглощение света, соответствующего синей и зелёной областям спектра, переводит ионы Cr3+ с основного уровня E1 на возбуждённые уровни, образующие две широкие полосы 1 и 2. Затем за сравнительно малое время (~ 10-8 сек) осуществляется безызлучательный переход этих ионов на уровни E2 и. Избыток энергии при этом передаётся колебаниям кристаллической решётки. Время жизни ионов Cr3+ на уровнях E 2 и составляет 10-3 сек. Только по истечении этого времени ионы снова возвращаются на основной уровень E1. Переходам E2® E1 и ® E1 соответствует излучение в красной области спектра. Если освещать кристалл рубина светом источника, обладающего достаточно большой интенсивностью в синей и зелёной областях спектра (полосы накачки), то происходит накопление ионов Cr3+ на уровнях E2 и и возникает инверсия населённостей этих уровней по отношению к основному уровню E1. Это позволило создать Л., работающий на переходах E2® E1 и ® E1, генерирующий свет с длиной волны l " 0,7 мкм.

Для создания инверсии населённостей уровней E2, относительно E1 необходимо перевести больше половины ионов Cr3+ на уровни E2, за время, не превышающее 10-3 сек. Это предъявляет большие требования к мощности источника накачки. В качестве таких источников используются импульсные ксеноновые лампы. Длительность импульса накачки обычно ~ 10-3 сек. За это время в каждом см3 кристалла поглощается энергия в несколько дж.

Большое распространение получил метод создания активной среды непосредственно в электрическом разряде в различных газах. Возможности получения с помощью этого метода импульсов генерации большой энергии ограничиваются в основном малой плотностью рабочей среды; инверсию населённостей легче получить в сравнительно разреженных газах. Однако этот метод позволяет использовать в качестве активной среды Л. самые различные атомные и молекулярные газы и их смеси, а также различные типы электрических разрядов в газах. В результате оказалось возможным создать Л., работающие в инфракрасной, видимой и ультрафиолетовой областях спектра. Кроме того, возбуждение в электрическом разряде позволяет реализовать непрерывный режим работы Л. с большим кпд преобразования электрической энергии в энергию излучения Л. (см. Газовый лазер).

В наиболее мощном газоразрядном Л. непрерывного действия на смеси молекулярных газов CO2 и N2 (с добавлением ряда др. компонентов) механизм образования инверсии населённостей состоит в следующем: электроны газоразрядной плазмы, ускоряемые электрическим полем, при столкновениях возбуждают колебания молекул N2. Затем в результате столкновений возбуждённых молекул N2 с молекулами CO2 происходит заселение одного из колебательных уровней CO2, что и обеспечивает возникновение инверсии населённостей. Все стадии этого процесса оказываются очень эффективными, и кпд достигает 20-30%.

В дальнейшем оказалось возможным создать газодинамический лазер на смеси CO2 и N2, в котором газовая смесь нагревается до температуры Т ~ 2000 К, формируется сверхзвуковой поток, который, выходя из сопла, расширяется и тем самым быстро охлаждается. В результате быстрого охлаждения возникает инверсия населённостей рабочих уровней CO2 (см. Газодинамический лазер). Кпд преобразования тепловой энергии в излучение газодинамического Л. невелик (~ 1%). Тем не менее газодинамические Л. весьма перспективны, т. к., во-первых, в этом случае облегчается задача создания крупногабаритных Л. большой мощности и, во-вторых, при использовании тепловых источников энергии вопрос о кпд Л. стоит менее остро, чем в случае электроразрядных Л. При сжигании 1 г топлива (например, керосина) выделяется энергия порядка десятка тыс. дж, в то время как электрическая энергия, запасаемая в конденсаторах, питающих лампы вспышки, - порядка 0,1 дж на 1 см 3 объёма конденсатора.

Т. к. химические связи молекул являются исключительно энергоёмким накопителем энергии, то перспективно непосредственное использование энергии химических связей для возбуждения частиц, т.е. создание активной среды Л. в результате химических реакций. Примером химической накачки является реакция водорода или дейтерия с фтором. Если в смеси H2 и F2 к.-л. образом диссоциировать небольшое кол-во молекул F2, то возникает цепная реакция F + H2 ® HF + H, H + F2 ® HF + F и т.д. Молекулы HF, образующиеся в результате этой реакции, находятся в возбуждённом состоянии, причём для ряда квантовых переходов выполняются условия инверсии населённостей. Если к исходной смеси добавить CO2, то, кроме Л. на переходах HF (l ~ 3 мкм), удаётся также создать Л. на переходах СО2 (l = 10,6 мкм). Здесь колебательно возбуждённые молекулы HF играют ту же роль, что и молекулы N2 в газоразрядных лазерах на CO2. Более эффективной в этом случае оказывается смесь D2, F2 и CO2. В этой смеси коэффициент преобразования химической энергии в энергию когерентного излучения может достигать 15%. Химические Л. могут работать как в импульсном, так и в непрерывном режимах; разработаны различные варианты химических Л., в том числе сходные с газодинамическими Л.

В полупроводниках активную среду оказалось возможным создавать различными способами: 1) инжекцией носителей тока через электронно-дырочный переход; 2) возбуждением электронным ударом; 3) оптическим возбуждением.