Основные метеорологические факторы. Метеорологические факторы, влияющие на рассеивание примесей

Каковы же, в подробностях, , приводящие к вышеотмеченным результатам, довольно трудно уточнить. Попытки установить с точностью (хотя бы относительной) эти факторы привели лишь к неполным, сомнительным, иногда противоречивым результатам. Из множественных входящих в состав метеорологического комплекса факторов, которые были изучены (воздушные течения, сквозняки, сырость, температура, атмосферное электричество, барометрическое давление, фронты воздуха, атмосферная ионизация, и пр.), более всего обращено внимание на атмосферную ионизацию, фронты воздуха и атмосферное давление, которые активны.

Некоторые исследователи , в своих работах, более всего ссылаются на часть вышеуказанных, другие же высказываются широко, неопределенно, без особого анализа и уточнения, о метеорологических факторах вообще. Тижевский считает способствующим эпидемиям фактором - электромагнетические расстройства атмосферы; Гаас считает, что падение барометрического давления способствует вылуплению аллергических проявлений, в особенности анафилактическому шоку; Фритше приписывает атмосферным электрическим явлениям метеоротропическое благотворное влияние на тромбоэмболические процессы; Коже обвиняет внезапные изменения атмосферного давления, как факторы развязывающие инфаркт миокарда, в то время, как А. Михай утверждает, что существенную роль играют фронты воздуха и, что не встречал ни одного случая инфаркта вне бесфронтового дня, а Данишевский ссылается на магнитные бури и т.д.

Только иногда появляются яснее: это случай определенных атмосферных течений (фен, сирокко), патогенное действие которых показывается ясно и которые вызывают массовые расстройства, настоящие малые эпидемические взрывы патологии. Так как в большинстве случаев действие метеорологических факторов относительно незаметно, понятно, что оно часто ускользает идентификации и особенно уточнению. Кажется, что речь идет о комплексном действии, множественном, многостороннем, а не о действии одного из вышеозначенных факторов: таково мнение как русских исследователей (Тижевский, Данишевский и др.), так и западных (Пикарди и др.).

Поэтому в работах, касающихся патогенного действия меторологических факторов , часто используются различные понятия; потому же среди них нет - лишь изредка - общих факторов и одинаковых мероценки; также по этой причине редко можно сравнивать результаты. Отсюда и многочисленные использованные наименования и выражения, а также и определенные сущности и ярлыки, под какими иногда был представлен патологический отголосок метеорологических факторов: „синдром бурной погоды" (Неттер), „синдром конца ночи"" (Аннес Диас). неговоря уже о синдроме сирокко или,Fohnkrankheit („болезнь фена"), фактически соответствуя некоторым более точным условиям.

Между тем было замечено, что некоторые патологические моменты , у человека, могли бы быть отнесены к определенным космическим и солнечным факторам. Было замечено, в первую очередь, что определенные атмосферные перемены, приливы-отливы морские, эпидемии совпадали и совпадают с особыми космическими моментами: солнечные вспышки, солнечные пятна и пр. (Тижевский, Делак, Ковач, Поспишил и др.).

Даже некоторые широкие экономические расстройства совпали с подобными космическими моментами и были отнесены к ним (Барэйль). Более тщательные исследования последнего времени установили, что между космическими происшествиями и определенными атмосферными расстройствами и бедствиями существует некоторая параллельность. Кажется, что связь действительна и, что космические факторы, действительно, оказывают определенное влияние (но незаметное, трудно выявляемое) на атмосферу, в которой иногда вызывают магнитные бури и другие расстройства, посредством которых далее воздействуют на землю, море, людей, также как вляют на них времена ми года, климатом, в доброй доле также подчиненных космическим факторам.

Таким образом от космических факторов зависят (более или менее непосредственно) биологические ритмы, та периодичность развертывания биологических элементов организма, ритмы налаженные, как видно, согласно всеобщему ритму космических явлений (суточная периодичность, сезонная периодичность т.д.). Также от вмешательства космических факторов зависят, кажется, и странные появления, серийно, некоторых атмосферных, социальных или патогенетических явлений, породившие так называемый „закон серий", видимо таинственного (Форе), потому что часто указанные явления совпадают с солнечными вспышками или пятнами и связанными с ними магнитными бурями.

    метеорологические факторы загрязнения атмосферы - метеорологические факторы Метеорологические элементы, явления и процессы, влияющие на загрязнение атмосферы [ГОСТ 17.2.1.04 77] [Защита атмосферного воздуха от антропогенного загрязнения. Основные понятия, термины и определения (справочное… … Справочник технического переводчика

    Метеорологические факторы загрязнения атмосферы - 7. Метеорологические факторы загрязнения атмосферы Метеорологические факторы D. Meteorologische EinfluBgro Ben der Luftverunreinigung Е. Meteorological factors of air pollution F. Facteurs meteorologiques de la pollution dair Метеорологические… …

    Терминология ГОСТ 17.2.1.04 77: Охрана природы. Атмосфера. Источники и метеорологические факторы загрязнения, промышленные выбросы. Термины и определения оригинал документа: 5. Антропогенное загрязнение атмосферы Антропогенное загрязнение D.… … Словарь-справочник терминов нормативно-технической документации

    Факторы и причины миграции - Понятие «фактор» (в переводе с латинского делающий, производящий) используется для обозначения движущей силы какого либо процесса, явления. Оно выступает в двух ипостасях: и как фактор уровня (статики), и как фактор развития (динамики).… … Миграция: словарь основных терминов

    ГОСТ Р 14.03-2005: Экологический менеджмент. Воздействующие факторы. Классификация - Терминология ГОСТ Р 14.03 2005: Экологический менеджмент. Воздействующие факторы. Классификация оригинал документа: 3.4 абиотические (экологические) факторы: Факторы, связанные с воздействием на организмы неживой природы, включая климатические… … Словарь-справочник терминов нормативно-технической документации

    абиотические (экологические) факторы - 3.4 абиотические (экологические) факторы: Факторы, связанные с воздействием на организмы неживой природы, включая климатические (метеорологические) факторы (температуру окружающей среды, свет, влажность воздуха, атмосферное давление, скорость и… … Словарь-справочник терминов нормативно-технической документации

    Преобладающие для данной местности метеорологические условия (температура и влажность воздуха, атмосферное давление, осадки и др.), оказывающие влияние на организм человека, животных, растений … Большой медицинский словарь

    условия - (см. раздел 1) d) Может ли машина представлять опасности при создании или потреблении определенных материалов? Нет Источник: ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования … Словарь-справочник терминов нормативно-технической документации

    Условия погоды благоприятные - состояние погоды, при котором метеорологические факторы не оказывают отрицательного влияния на состояние поверхности дороги, скорость и безопасность движения автомобилей (сухо, ясно, отсутствие ветра или ветер со скоростью до 10 м/с, отсутствие… … Словарь-справочник терминов нормативно-технической документации

    3.18 источник (source): Объект или деятельность с потенциальными последствиями. Примечание Применительно к безопасности источник представляет собой опасность (см. ИСО/МЭК Руководство 51). [ИСО/МЭК Руководство 73:2002, пункт 3.1.5] Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Живые барометры , И. Ф. Заянчковский. Герои этой занимательной книги - животные и растения, по поведению которых можно определить погоду. Автор рассказывает о реакции животных и растений на различные метеорологические факторы, об…
  • Метеозависимость , Алла Иоффе (АМИ). «Метеозависимость»… Так я назвала этот сборник. Тех, кто знаком с тем, что я пишу, это не удивит. Метеорологические факторы – это то, что влияет на нас, но никак от нас не зависит, поэтому я…

Человек, находясь в условиях естественной внешней среды, подвергается влиянию различных метеорологических факторов : температура, влажность и движение воздуха, атмосферное давление, осадки, солнечное и космическое излучения и т. д. Перечисленные метеорологические факторы в совокупности определяют погоду.

Погода – это физическое состояние атмосферы в данном месте в определенный период времени. Многолетний режим погоды, обусловленный солнечной радиацией, характером местности (рельеф, почва, растительность и т. д.), и связанная с ним циркуляция атмосферы создают климат. Существуют различные классификации погод в зависимости от того, какие факторы положены в основу.

С гигиенической точки зрения различают три типа погоды:

1. Оптимальный тип погоды благоприятно действует на организм человека. Это умеренно влажные или сухие, тихие и преимущественно ясные, солнечные погоды.

2. Краздражающему типу относят погоды с некоторым нарушением оптимального воздействия метеорологических факторов. Это солнечные и пасмурные, сухие и влажные, тихие и ветреные погоды.

3. Острые типы погод характеризуются резкими изменениями метеорологических элементов. Это сырые, дождливые, пасмурные, очень ветреные погоды с резкими суточными колебаниями температуры воздуха и барометрического давления.

Хотя на человека влияет климат в целом, в определенных условиях ведущую роль могут играть отдельные метеорологические элементы. Следует отметить, что влияние климата на состояние организма определяется не столько абсолютными величинами метеорологических элементов, свойственных тому или другому типу погоды, сколько непериодичностью колебаний климатических воздействий, являющихся в связи с этим неожиданными для организма.

Метеорологические элементы, как правило, вызывают у человека нормальные физиологические реакции, приводя к адаптации организма. На этом основано использование различных климатических факторов для активного воздействия на организм с целью профилактики и лечения различных заболеваний. Однако под влиянием неблагоприятных климатических условий в организме человека могут происходить патологические сдвиги, приводящие к развитию болезней. Всеми этими проблемами занимается медицинская климатология.

Медицинская климатология – отрасль медицинской науки, которая изучает влияние климата, сезонов и погоды на здоровье человека, разрабатывает методику использования климатических факторов в лечебных и профилактических целях.

Температура воздуха. Этот фактор зависит от степени прогревания солнечным светом различных поясов земного шара. Перепады температур в природе достаточно велики и составляют более 100 °C.



Зона температурного комфорта для здорового человека в спокойном состоянии при умеренной влажности и неподвижности воздуха находится в пределах 17–27 °C. Следует заметить, что этот диапазон индивидуально обусловлен. В зависимости от климатических условий, местожительства, выносливости организма и состояния здоровья границы зоны термического комфорта для разных лиц могут перемещаться.

Независимо от окружающей среды температура у человека сохраняется постоянно на уровне около 36,6 °C и является одной из физиологических констант гомеостаза. Пределы температуры тела, при которых организм сохраняет жизнеспособность, сравнительно невелики. Смерть человека наступает при повышении до 43 °C и при падении ниже 27–25 °C.

Относительное термическое постоянство внутренней среды организма, поддерживаемое посредством физической и химической терморегуляции, позволяет человеку существовать не только в комфортных, но и в субкомфортных и даже в экстремальных условиях. При этом адаптация осуществляется как за счет срочной физической и химической терморегуляции, так и за счет более стойких биохимических, морфологических и наследственных изменений.

Между организмом человека и окружающей его средой происходит непрерывный процесс теплового обмена, состоящий в передаче вырабатываемого организмом тепла в окружающую среду. При комфортных метеорологических условиях основная часть тепла, вырабатываемого организмом, переходит в окружающую среду путем излучения с его поверхности (около 56 %). Второе место в процессе теплопотери организма занимает отдача тепла путем испарения (примерно 29 %). Третье место занимает перенос тепла движущейся средой (конвекция) и составляет примерно 15 %.

Температура окружающей среды, влияя на организм через рецепторы поверхности тела, приводит в действие систему физиологических механизмов, которая в зависимости от характера температурного раздражителя (холод или жара) соответственно уменьшает или увеличивает процессы теплопродукции и теплоотдачи. Это, в свою очередь, обеспечивает сохранение температуры тела на нормальном физиологическом уровне.

При понижении температуры воздуха возбудимость нервной системы и выделение гормонов надпочечниками значительно повышаются. Основной обмен и выработка тепла организмом увеличиваются. Периферические сосуды сужаются, кровоснабжение кожи уменьшается, тогда, как температура ядра тела сохраняется. Сужение сосудов кожи и подкожной клетчатки, а при более низких температурах и сокращение гладких мышц кожи (так называемая «гусиная кожа») способствуют ослаблению кровотока во внешних покровах тела. При этом кожа охлаждается, разница между ее температурой и температурой окружающей среды сокращается, а это уменьшает теплоотдачу. Указанные реакции способствуют сохранению нормальной температуры тела.

Местная и общая гипотермия способны вызвать ознобление кожи и слизистых оболочек, воспаление стенок сосудов и нервных стволов, а также отморожение тканей, а при значительном охлаждении крови – замерзание всего организма. Охлаждение при потении, резкие перепады температур, глубокое охлаждение внутренних органов нередко ведут к простудным заболеваниям.

При адаптации к холоду терморегуляция изменяется. В физической терморегуляции начинает преобладать расширение сосудов. Несколько снижается артериальное давление. Выравнивается частота дыхания и сердечных сокращений, а также скорость кровотока. В химической терморегуляции усиливается несократительное теплообразование без дрожи. Перестраиваются различные виды обмена веществ. Сохраняются гипертрофированными надпочечники. Уплотняется и утолщается поверхностный слой кожи открытых участков. Увеличивается жировая прослойка, а в наиболее охлаждаемых местах откладывается высококалорийный бурый жир.

В реакции приспособления к холодовому воздействию вовлекаются почти все физиологические системы организма. При этом используются как срочные меры защиты обычных реакций терморегуляции, так и способы повышения выносливости к продолжительному воздействию.

При срочной адаптации происходят реакции термической изоляции (сужение сосудов), понижения теплоотдачи и усиления теплообразования.

При длительной адаптации те же реакции приобретают новое качество. Реактивность понижается, но резистентность повышается. Организм начинает отвечать значительными изменениями терморегуляции на более низкие температуры внешней среды, поддерживая оптимальную температуру не только внутренних органов, но и поверхностных тканей.

Таким образом, в ходе адаптации к низким температурам в организме происходят стойкие приспособительные изменения от клеточно-молекулярного уровня до поведенческих психофизиологических реакций. В тканях идет физико-химическая перестройка, обеспечивающая усиленное теплообразование и способность переносить значительные охлаждения без повреждающего действия. Взаимодействие местных тканевых процессов с саморегулирующимися общеорганизменными происходит за счет нервной и гуморальной регуляции, сократительного и несократительного термогенеза мышц, усиливающего теплообразование в несколько раз. Повышается общий обмен веществ, усиливается функция щитовидной железы, увеличивается количество катехоламинов, усиливается кровообращение мозга, сердечной мышцы, печени. Повышение метаболических реакций в тканях создает дополнительный резерв возможности существования при низких температурах.

Умеренное закаливание значительно повышает устойчивость человека к повреждающему действию холода, к простудным и инфекционным заболеваниям, а также общую сопротивляемость организма к неблагоприятным факторам внешней и внутренней среды, повышает работоспособность.

При повышении температуры основной обмен, а соответственно и выработка тепла у человека снижаются. Физическая терморегуляция характеризуется рефлекторным расширением периферических сосудов, что увеличивает кровоснабжение кожи, при этом отдача тепла организмом увеличивается в результате усиления излучения. Одновременно увеличивается потоотделение – мощный фактор теплопотери при испарении пота с поверхности кожи. Химическая терморегуляция направлена на понижение теплообразования путем снижения обмена веществ.

При адаптации организма к повышенной температуре вступают в действие механизмы регуляции, направленные на поддержание термического постоянства внутренней среды. Первыми реагируют дыхательная и сердечно-сосудистая системы, обеспечивающие усиленную радиационно-конвекционную теплоотдачу. Далее включается наиболее мощная потоиспарительная система охлаждения.

Значительное повышение температуры вызывает резкое расширение периферических кровеносных сосудов, учащение дыхания и пульса, увеличение минутного объема крови с некоторым снижением артериального давления. Кровоток во внутренних органах и в мышцах уменьшается. Возбудимость нервной системы падает.

Когда температура внешней среды достигает температуры крови (37–38 °C), возникают критические условия терморегуляции. При этом теплоотдача осуществляется главным образом за счет потения. Если потение затруднено, например, при сильной влажности окружающей среды, происходит перегревание организма (гипертермия).

Гипертермия сопровождается повышением температуры тела, нарушением водно-солевого обмена и витаминного равновесия с образованием недоокисленных продуктов обмена веществ. В случаях недостатка влаги начинается сгущение крови. При перегревании возможны нарушения кровообращения и дыхания, повышение, а затем падение артериального давления.

Длительное или систематически повторяющееся действие умеренно высоких температур приводит к повышению толерантности к тепловым факторам. Происходит закаливание организма. Человек сохраняет работоспособность при значительном повышении температуры внешней среды.

Таким образом, изменение температуры окружающей среды в ту или иную сторону от зоны температурного комфорта приводит в действие комплекс физиологических механизмов, способствующих сохранению температуры тела на нормальном уровне. В экстремальных температурных условиях при срыве адаптации возможны нарушения процессов саморегуляции и возникновение патологических реакций.

Влажность воздуха. Зависит от присутствия в воздухе водяных паров, которые появляются в результате конденсации при встрече теплого и холодного воздуха. Абсолютной влажностью называют плотность водяного пара или его массу в единице объема. Переносимость человеком температуры окружающей среды зависит от относительной влажности.

Относительная влажность воздуха – это процентное отношение количества содержащихся в определенном объеме воздуха водяных паров к тому их количеству, которое полностью насыщает этот объем при данной температуре. При падении температуры воздуха относительная влажность растет, а при повышении – падает. В сухой и жаркой местности днем относительная влажность составляет от 5 до 20 %, в сырой – от 80 до 90 %. Во время выпадения осадков она может достигать 100 %.

Относительную влажность воздуха 40–60 % при температуре 18–21 °C считают оптимальной для человека. Воздух, относительная влажность которого ниже 20 %, оценивается как сухой, от 71 до 85 % – как умеренно влажный, более 86 % – как сильно влажный.

Умеренная влажность воздуха обеспечивает нормальную жизнедеятельность организма. У человека она способствует увлажнению кожи и слизистых оболочек дыхательных путей. От влажности вдыхаемого воздуха в определенной мере зависит поддержание постоянства влажности внутренней среды организма. Сочетаясь с температурными факторами, влажность воздуха создает условия для термического комфорта или нарушает его, способствуя переохлаждению или перегреванию организма, а также гидратации или дегидратации тканей.

Одновременное повышение температуры и влажности воздуха резко ухудшает самочувствие человека и сокращает возможные сроки пребывания его в этих условиях. При этом происходит повышение температуры тела, учащение пульса, дыхания. Появляется головная боль, слабость, понижается двигательная активность. Плохая переносимость жары в сочетании с повышенной относительной влажностью обусловлена тем, что одновременно с усилением потоотделения при высокой влажности окружающей среды пот плохо испаряется с поверхности кожи. Теплоотдача затруднена. Организм все больше перегревается, и может возникнуть тепловой удар.

Повышенная влажность при пониженной температуре воздуха является неблагоприятным фактором. При этом происходит резкое увеличение теплоотдачи, что опасно для здоровья. Даже температура 0 °C может привести к отморожению лица и конечностей, особенно при наличии ветра.

Низкая влажность воздуха (менее 20 %) сопровождается значительными испарениями влаги со слизистых оболочек дыхательных путей. Это приводит к уменьшению их фильтрующей способности и к неприятным ощущениям в горле и сухости во рту.

Границами, в пределах которых тепловой баланс человека в покое поддерживается уже со значительным напряжением, считают температуру воздуха 40 °C и влажность 30 % или температуру воздуха 30 °C и влажность 85 %.

В любом явлении окружающей нас природы существует строгая повторяемость процессов: день и ночь, прилив и отлив, зима и лето. Ритмичность наблюдается не только в движении Земли, Солнца, Луны и звезд, но и является неотъемлемым и универсальным свойством живой материи, свойством, проникающим во все жизненные явления – от молекулярного уровня до уровня целого организма.

В ходе исторического развития человек приспособился к определенному ритму жизни, обусловленному ритмическими изменениями в природной среде и энергетической динамикой обменных процессов.

В настоящее время известно множество ритмических процессов в организме, называемых биоритмами. К ним относятся ритмы работы сердца, дыхания, биоэлектрической активности мозга. Вся наша жизнь представляет собой постоянную смену покоя и активной деятельности, сна и бодрствования, утомления от напряженного труда и отдыха.

При резкой смене погоды снижается физическая и умственная работоспособность, обостряются болезни, увеличивается число ошибок, несчастных и даже смертных случаев. Изменения погоды не одинаково сказываются на самочувствии разных людей. У здорового человека при изменении погоды происходит своевременное подстраивание физиологических процессов в организме к изменившимся условиям внешней среды. В результате усиливается защитная реакция и здоровые люди практически не ощущают отрицательного влияния погоды.

Солнечная радиация и её профилактика

Самым мощным природным фактором физического воздействия является солнечный свет. Длительное пребывание на солнце может привести к ожогам различной степени, вызвать тепловой или солнечный удар.

Метеопатология. Большинство здоровых людей практически не чувствительны к изменениям погоды. Вместе с тем довольно часто встречаются люди, которые проявляют повышенную чувствительность к колебаниям метеопогодных условий. Таких людей называют метеолабильными. Как правило, они реагируют на резкие, контрастные смены погод или на возникновение метеоусловий, необычных для данного времени года. Известно, что метеопатические реакции обычно предшествуют резким колебаниям погоды. Как правило, метеолабильные люди чувствительны к комплексам погодных факторов. Однако существуют лица, плохо переносящие отдельные метеорологические факторы. Они могут страдать анемопатией (реакции на ветер), аэрофобией (состояние страха на резкие изменения в воздушной среде), гелиопаией (повышенная чувствительность к состоянию солнечной активности), циклонопатией (болезненное состояние на погодные изменения, вызванные циклоном) и т. п. Метеопатические реакции связаны с тем, что адаптивные механизмы у таких людей или недостаточно развиты, или ослаблены под влиянием патологических процессов.

Субъективными признаками метеолабильности являются ухудшение самочувствия, общее недомогание, беспокойство, слабость, головокружение, головная боль, сердцебиение, боли в области сердца и за грудиной, повышение раздражительности, снижение работоспособности и т. п.

Субъективные жалобы, как правило, сопровождаются объективными изменениями, происходящими в организме. Особенно чутко реагирует на перепады погоды вегетативная нервная система: парасимпатический, а затем и симпатический отдел. В результате появляются функциональные сдвиги во внутренних органах и системах. Возникают сердечно-сосудистые расстройства, происходят нарушения мозгового и коронарного кровообращения, изменяется терморегуляция и т. п. Показателями подобных сдвигов являются изменения характера электрокардиограммы, векторкардиограммы, реоэнцефалограммы, параметров артериального давления. Увеличивается количество лейкоцитов, холестерина, повышается свертываемость крови.

Метеолабильность обычно наблюдается у людей, страдающих различными заболеваниями: вегетативными неврозами, гипертонической болезнью, недостаточностью коронарного и церебрального кровообращения, глаукомой, стенокардией, инфарктом миокарда, язвенной болезнью желудка и двенадцатиперстной кишки, желчно- и мочекаменной болезнью, аллергией, бронхиальной астмой. Часто метеолабильность появляется после перенесенных заболеваний: гриппа, ангины, воспаления легких, обострения ревматизма и т. п. На основании сопоставления синоптических ситуаций с реакциями организма (биоклиматограмма) стало известно, что наиболее чувствительны к метеофакторам больные с сердечно-сосудистой и легочной недостаточностью по причине возникновения у них спастических состояний.

Механизмы возникновения метеопатических реакций недостаточно ясны. Полагают, что они могут иметь разную природу: от биохимической до физиологической. При этом известно, что местами координации реакций организма на внешние физические факторы являются высшие вегетативные центры головного мозга. С помощью лечебных и особенно профилактических мероприятий метеолабильным людям можно помочь справиться со своим состоянием.

ИССЛЕДОВАНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ В ПРОИЗВОДСТВЕННЫХ И УЧЕБНЫХ ПОМЕЩЕНИЯХ

Метеорологические факторы рабочей зоны

Нормальное самочувствие человека на предприятии и в быту в первую очередь зависит от метеорологических условий (микроклимата). Микроклиматом называют совокупность физических факторов производственной среды (температуры, влажности и скорости движения воздуха, атмосферного давления и интенсивность теплового излучения), которые комплексно влияют на тепловое состояние организма.

Атмосферный воздух является смесью 78% азота, 21% кислорода, около 1% аргона, углекислого и других газов в незначительной концентрации, а также воды во всех фазовых состояниях. Снижение содержания кислорода до 13% затрудняет дыхание, может привести к потере сознания и смерти, высокое содержание кислорода может вызвать вредные окислительные реакции в организме.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. В организме постоянно вырабатывается тепло, а его излишки выделяются в окружающий воздух. В состоянии покоя человек за сутки теряет около 7 120 кДж, при совершении легкой работы – 10 470 кДж, при осуществлении работы средней тяжести – 16 760 кДж, при выполнении тяжелых физических работ потери энергии составляют 25 140 – 33 520 кДж. Выделение теплоты происходит в основном через кожу (до 85%) путем конвекции, а также в результате испарения пота с поверхности кожи.

За счет терморегуляции температура тела остается постоянной – 36,65°С, что является важнейшим показателем нормального самочувствия. Изменение температуры окружающего воздуха приводит к изменениям в характере теплообмена. При температуре окружающего воздуха 15 – 25°С организм человека вырабатывает постоянное количество теплоты (зона покоя). При повышении температуры воздуха до 28°С осложняется нормальная умственная деятельность, ослабляется внимание и сопротивление организма различным вредным воздействиям, работоспособность падает на треть. При температуре выше 33°С выделение тепла из организма происходит только за счет испарения пота (I фаза перегрева). Потери могут составлять до 10 литров за рабочую смену. Вместе с потом из организма выводятся витамины, что нарушает витаминный обмен.

Обезвоживание приводит к резкому уменьшению объема плазмы крови, которая теряет вдвое больше воды, чем другие ткани и становится более вязкой. Дополнительно с водой уходят из крови хлориды поваренной соли до 20 – 50 г за смену, плазма крови теряет способность удерживать воду. Возмещают потерю хлоридов в организме за счет приема подсоленной воды из расчета 0,5 – 1,0 г/л. При неблагоприятных условиях теплообмена, когда отдается меньше тепла, чем вырабатывается в процессе труда, у человека может наступить II фаза перегрева организма – тепловой удар.

При снижении температуры окружающего воздуха кровеносные сосуды кожи сужаются, приток крови к поверхности тела замедляется, снижается отдача тепла. Сильное охлаждение приводит к обморожению кожи. Снижение температуры тела до 35°С вызывает болезненные ощущения, при снижении ее ниже 34°С наступает потеря сознания и смерть.

Санитарными нормами и правилами (СН) установлены оптимальные микроклиматические условия производственной среды: 19 – 21°С для кабинетов компьютерной техники; 17 – 20°С для учебных классов, кабинетов, аудиторий и спортивного зала; 16 – 18°С для учебных мастерских, вестибюля, гардероба и библиотеки. Относительная влажность воздуха принята за норму 40 – 60%, в теплое время до 75%, в классах компьютерной техники 55 – 62%. Скорость движения воздуха должна находиться в пределах 0,1 – 0,5 м/с, а в теплое время года 0,5 – 1,5 м/с и 0,1 – 0,2 м/с для помещений с вычислительной техникой.

Жизнедеятельность человека может проходить в широком диапазоне давлений 73,4 – 126,7 кПа (550 – 950 мм. рт. ст.), однако наиболее комфортное самочувствие имеет место при нормальных условиях (101,3 кПа, 760 мм. рт. ст.). Изменение давления в несколько сотен Па от нормальной величины вызывает болезненные ощущения. Также для здоровья человека опасна быстрая смена давления.

Из всех метеорологических факторов наибольшее значение для портостроения, эксплуатации портов и судоходства имеют: ветер, туманы, осадки, влажность и температура воздуха, температура воды. Ветер. Ветровой режим характеризуется направлением, ско­ростью, продолжительностью и повторяемостью. Знание ветрово­го режима особенно важно при строительстве портов на морях и водохранилищах. От ветра зависят направление и интенсивность волнения, которые определяют компоновку внешних устройств порта, их конструкцию и направление водных подходов к порту.Господствующее направление ветра должно также учитываться при взаимном расположении причалов с разными грузами, для чего строится ветровая диаграмма (Роза ветров)

Диаграмма строится в следующей последовательности:

Все ветры разбивают по скорости на несколько групп (ступенями 3 –5 м/сек)

1-5; 6-9; 10-14; 15-19; 20 и более.

Для каждой группы определяют процент повторяемости от общего числа всех наблюдений для данного направления:

В морской практике скорость ветра принято выражать в баллах(см. МТ-2000).

Температура воздуха и воды. Температуру воздуха и воды из­меряют на гидрометеостанциях в те же сроки, что и параметры ветра. Данные измерений оформляют в виде годовых графиков хода температуры. Основное значение этих данных для порто­строения состоит в том, что они определяют сроки замерзания и вскрытия бассейна, от чего зависит длительность навигации. Туманы. Туманы возникают в тех случаях, когда упругость водяного пара в атмосфере достигает упругости насыщенного па­ра. В этом случае водяной пар конденсируется на частицах пыли или поваренной соли (на морях и океанах) и эти скопления в воз­духе мельчайших капель воды образуют туман. Несмотря на раз­витие радиолокации, движение су­дов в тумане все же ограничено.При очень густом тумане, когда уже на расстоянии нескольких де­сятков метров не видны даже круп­ные предметы, иногда приходится прекращать и перегрузочные ра­боты в портах. В речных условиях туманы довольно кратковременны и быстро рассеиваются, а в некото­рых морских портах они бывают затяжными и держатся неделями. Исключительным в этом отно­шении является о. Ньюфаундленд, в районе которого летние тума­ны иногда держатся 20 дней и более. В некоторых отечественных морских портах на Балтийском и Черном морях, а также на Даль­нем Востоке в году бывает 60-80 дней с туманами. Осадки. Атмосферные осадки в виде дождя и снега следует учитывать при проектировании причалов, на которых перегружа­ются грузы, боящиеся влаги. В этом случае необходимо предус­матривать специальные устройства, предохраняющие место пере­грузки от осадков, или при оценке расчетного суточного грузообо­рота учитывать неизбежные перерывы в работе причалов. При этом имеет значение не столько общее количество осадков, как число дней с осадками. В этом отношении одним из “неудачных” портов является Санкт-Петербургский, где при общем количестве осад­ков около 470 мм в год в отдельные годы бывает более 200 дней с осадками. Данные об осадках получают от Госметеослужбы РФ.

Также, значение размеров осадков необходимо для определения количества ливневых вод, подлежащих организованному отводу с территории причалов и складов через специальную ливневую канализацию.